Mister Exam
Lang:
EN
EN
ES
RU
Other calculators:
Integral Step by Step
Derivative Step by Step
Differential equations Step by Step
How to use it?
Limit of the function
:
Limit of (1-4*x)^(1/x)
Limit of (-16+x^2+6*x)/(-2-5*x+3*x^2)
Limit of (1+x)^(2/3)-(-1+x)^(2/3)
Limit of 1/3+x/3
y+x^2
Identical expressions
y+x^ two
y plus x squared
y plus x to the power of two
y+x2
y+x²
y+x to the power of 2
Similar expressions
y-x^2
Limit of the function
/
y+x^2
Limit of the function y+x^2
at
→
Calculate the limit!
v
For end points:
---------
From the left (x0-)
From the right (x0+)
The graph:
from
to
Piecewise:
{
enter the piecewise function here
The solution
You have entered
[src]
/ 2\ lim \y + x / x->oo
$$\lim_{x \to \infty}\left(x^{2} + y\right)$$
Limit(y + x^2, x, oo, dir='-')
Detail solution
Let's take the limit
$$\lim_{x \to \infty}\left(x^{2} + y\right)$$
Let's divide numerator and denominator by x^2:
$$\lim_{x \to \infty}\left(x^{2} + y\right)$$ =
$$\lim_{x \to \infty}\left(\frac{1 + \frac{y}{x^{2}}}{\frac{1}{x^{2}}}\right)$$
Do Replacement
$$u = \frac{1}{x}$$
then
$$\lim_{x \to \infty}\left(\frac{1 + \frac{y}{x^{2}}}{\frac{1}{x^{2}}}\right) = \lim_{u \to 0^+}\left(\frac{u^{2} y + 1}{u^{2}}\right)$$
=
$$\frac{0^{2} y + 1}{0} = \infty$$
The final answer:
$$\lim_{x \to \infty}\left(x^{2} + y\right) = \infty$$
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
Rapid solution
[src]
oo
$$\infty$$
Expand and simplify
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to \infty}\left(x^{2} + y\right) = \infty$$
$$\lim_{x \to 0^-}\left(x^{2} + y\right) = y$$
More at x→0 from the left
$$\lim_{x \to 0^+}\left(x^{2} + y\right) = y$$
More at x→0 from the right
$$\lim_{x \to 1^-}\left(x^{2} + y\right) = y + 1$$
More at x→1 from the left
$$\lim_{x \to 1^+}\left(x^{2} + y\right) = y + 1$$
More at x→1 from the right
$$\lim_{x \to -\infty}\left(x^{2} + y\right) = \infty$$
More at x→-oo