Mister Exam

Other calculators:


x^(x^x)/x

Limit of the function x^(x^x)/x

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
     / / x\\
     | \x /|
     |x    |
 lim |-----|
x->0+\  x  /
$$\lim_{x \to 0^+}\left(\frac{x^{x^{x}}}{x}\right)$$
Limit(x^(x^x)/x, x, 0)
Lopital's rule
We have indeterminateness of type
0/0,

i.e. limit for the numerator is
$$\lim_{x \to 0^+} x^{x^{x}} = 0$$
and limit for the denominator is
$$\lim_{x \to 0^+} x = 0$$
Let's take derivatives of the numerator and denominator until we eliminate indeterninateness.
$$\lim_{x \to 0^+}\left(\frac{x^{x^{x}}}{x}\right)$$
=
$$\lim_{x \to 0^+}\left(\frac{\frac{d}{d x} x^{x^{x}}}{\frac{d}{d x} x}\right)$$
=
$$\lim_{x \to 0^+}\left(x^{x^{x}} \left(x^{x} \left(\log{\left(x \right)} + 1\right) \log{\left(x \right)} + \frac{x^{x}}{x}\right)\right)$$
=
$$\lim_{x \to 0^+}\left(x^{x^{x}} \left(x^{x} \left(\log{\left(x \right)} + 1\right) \log{\left(x \right)} + \frac{x^{x}}{x}\right)\right)$$
=
$$1$$
It can be seen that we have applied Lopital's rule (we have taken derivatives with respect to the numerator and denominator) 1 time(s)
The graph
Rapid solution [src]
1
$$1$$
One‐sided limits [src]
     / / x\\
     | \x /|
     |x    |
 lim |-----|
x->0+\  x  /
$$\lim_{x \to 0^+}\left(\frac{x^{x^{x}}}{x}\right)$$
1
$$1$$
= 1.0151367575031
     / / x\\
     | \x /|
     |x    |
 lim |-----|
x->0-\  x  /
$$\lim_{x \to 0^-}\left(\frac{x^{x^{x}}}{x}\right)$$
1
$$1$$
= (0.986980095563771 + 0.0121900932593533j)
= (0.986980095563771 + 0.0121900932593533j)
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to 0^-}\left(\frac{x^{x^{x}}}{x}\right) = 1$$
More at x→0 from the left
$$\lim_{x \to 0^+}\left(\frac{x^{x^{x}}}{x}\right) = 1$$
$$\lim_{x \to \infty}\left(\frac{x^{x^{x}}}{x}\right) = \infty$$
More at x→oo
$$\lim_{x \to 1^-}\left(\frac{x^{x^{x}}}{x}\right) = 1$$
More at x→1 from the left
$$\lim_{x \to 1^+}\left(\frac{x^{x^{x}}}{x}\right) = 1$$
More at x→1 from the right
$$\lim_{x \to -\infty}\left(\frac{x^{x^{x}}}{x}\right) = 0$$
More at x→-oo
Numerical answer [src]
1.0151367575031
1.0151367575031
The graph
Limit of the function x^(x^x)/x