We have indeterminateness of type
0/0,
i.e. limit for the numerator is
$$\lim_{x \to 0^+} x^{x^{x}} = 0$$
and limit for the denominator is
$$\lim_{x \to 0^+} x = 0$$
Let's take derivatives of the numerator and denominator until we eliminate indeterninateness.
$$\lim_{x \to 0^+}\left(\frac{x^{x^{x}}}{x}\right)$$
=
$$\lim_{x \to 0^+}\left(\frac{\frac{d}{d x} x^{x^{x}}}{\frac{d}{d x} x}\right)$$
=
$$\lim_{x \to 0^+}\left(x^{x^{x}} \left(x^{x} \left(\log{\left(x \right)} + 1\right) \log{\left(x \right)} + \frac{x^{x}}{x}\right)\right)$$
=
$$\lim_{x \to 0^+}\left(x^{x^{x}} \left(x^{x} \left(\log{\left(x \right)} + 1\right) \log{\left(x \right)} + \frac{x^{x}}{x}\right)\right)$$
=
$$1$$
It can be seen that we have applied Lopital's rule (we have taken derivatives with respect to the numerator and denominator) 1 time(s)