Mister Exam
Lang:
EN
EN
ES
RU
Other calculators:
Integral Step by Step
Derivative Step by Step
Differential equations Step by Step
How to use it?
Limit of the function
:
Limit of (-2*x^2+4*x^3+5*x)/(3*x^2+7*x)
Limit of (-cos(5*x)+cos(3*x))/x^2
Limit of (-1+cos(7*x))/(-1+cos(3*x))
Limit of (16+x^2+10*x)/(-6+x^2-x)
Derivative of
:
x^2+3*x
Factor polynomial
:
x^2+3*x
Identical expressions
x^ two + three *x
x squared plus 3 multiply by x
x to the power of two plus three multiply by x
x2+3*x
x²+3*x
x to the power of 2+3*x
x^2+3x
x2+3x
Similar expressions
x^2-3*x
(-1-x^2+3*x)/x
(-40+x^2+3*x)/(15+3*x)
(-4+x^2+3*x)/(4+x)
1-7*x+2*x^2+3*x^3+x^4/3
(x^2+3*x)/sin(3*x)
Limit of the function
/
x^2+3*x
Limit of the function x^2+3*x
at
→
Calculate the limit!
v
For end points:
---------
From the left (x0-)
From the right (x0+)
The graph:
from
to
Piecewise:
{
enter the piecewise function here
The solution
You have entered
[src]
/ 2 \ lim \x + 3*x/ x->oo
$$\lim_{x \to \infty}\left(x^{2} + 3 x\right)$$
Limit(x^2 + 3*x, x, oo, dir='-')
Detail solution
Let's take the limit
$$\lim_{x \to \infty}\left(x^{2} + 3 x\right)$$
Let's divide numerator and denominator by x^2:
$$\lim_{x \to \infty}\left(x^{2} + 3 x\right)$$ =
$$\lim_{x \to \infty}\left(\frac{1 + \frac{3}{x}}{\frac{1}{x^{2}}}\right)$$
Do Replacement
$$u = \frac{1}{x}$$
then
$$\lim_{x \to \infty}\left(\frac{1 + \frac{3}{x}}{\frac{1}{x^{2}}}\right) = \lim_{u \to 0^+}\left(\frac{3 u + 1}{u^{2}}\right)$$
=
$$\frac{0 \cdot 3 + 1}{0} = \infty$$
The final answer:
$$\lim_{x \to \infty}\left(x^{2} + 3 x\right) = \infty$$
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
Plot the graph
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to \infty}\left(x^{2} + 3 x\right) = \infty$$
$$\lim_{x \to 0^-}\left(x^{2} + 3 x\right) = 0$$
More at x→0 from the left
$$\lim_{x \to 0^+}\left(x^{2} + 3 x\right) = 0$$
More at x→0 from the right
$$\lim_{x \to 1^-}\left(x^{2} + 3 x\right) = 4$$
More at x→1 from the left
$$\lim_{x \to 1^+}\left(x^{2} + 3 x\right) = 4$$
More at x→1 from the right
$$\lim_{x \to -\infty}\left(x^{2} + 3 x\right) = \infty$$
More at x→-oo
Rapid solution
[src]
oo
$$\infty$$
Expand and simplify
The graph