Mister Exam

Other calculators:


(x^2+6*x)/x

Limit of the function (x^2+6*x)/x

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
     / 2      \
     |x  + 6*x|
 lim |--------|
x->0+\   x    /
limx0+(x2+6xx)\lim_{x \to 0^+}\left(\frac{x^{2} + 6 x}{x}\right)
Limit((x^2 + 6*x)/x, x, 0)
Detail solution
Let's take the limit
limx0+(x2+6xx)\lim_{x \to 0^+}\left(\frac{x^{2} + 6 x}{x}\right)
transform
limx0+(x2+6xx)\lim_{x \to 0^+}\left(\frac{x^{2} + 6 x}{x}\right)
=
limx0+(x(x+6)x)\lim_{x \to 0^+}\left(\frac{x \left(x + 6\right)}{x}\right)
=
limx0+(x+6)=\lim_{x \to 0^+}\left(x + 6\right) =
6=6 =
= 6

The final answer:
limx0+(x2+6xx)=6\lim_{x \to 0^+}\left(\frac{x^{2} + 6 x}{x}\right) = 6
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
02468-8-6-4-2-1010-2020
Rapid solution [src]
6
66
Other limits x→0, -oo, +oo, 1
limx0(x2+6xx)=6\lim_{x \to 0^-}\left(\frac{x^{2} + 6 x}{x}\right) = 6
More at x→0 from the left
limx0+(x2+6xx)=6\lim_{x \to 0^+}\left(\frac{x^{2} + 6 x}{x}\right) = 6
limx(x2+6xx)=\lim_{x \to \infty}\left(\frac{x^{2} + 6 x}{x}\right) = \infty
More at x→oo
limx1(x2+6xx)=7\lim_{x \to 1^-}\left(\frac{x^{2} + 6 x}{x}\right) = 7
More at x→1 from the left
limx1+(x2+6xx)=7\lim_{x \to 1^+}\left(\frac{x^{2} + 6 x}{x}\right) = 7
More at x→1 from the right
limx(x2+6xx)=\lim_{x \to -\infty}\left(\frac{x^{2} + 6 x}{x}\right) = -\infty
More at x→-oo
One‐sided limits [src]
     / 2      \
     |x  + 6*x|
 lim |--------|
x->0+\   x    /
limx0+(x2+6xx)\lim_{x \to 0^+}\left(\frac{x^{2} + 6 x}{x}\right)
6
66
= 6.0
     / 2      \
     |x  + 6*x|
 lim |--------|
x->0-\   x    /
limx0(x2+6xx)\lim_{x \to 0^-}\left(\frac{x^{2} + 6 x}{x}\right)
6
66
= 6.0
= 6.0
Numerical answer [src]
6.0
6.0
The graph
Limit of the function (x^2+6*x)/x