Mister Exam

Other calculators:


(x^2+6*x)/x

Limit of the function (x^2+6*x)/x

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
     / 2      \
     |x  + 6*x|
 lim |--------|
x->0+\   x    /
$$\lim_{x \to 0^+}\left(\frac{x^{2} + 6 x}{x}\right)$$
Limit((x^2 + 6*x)/x, x, 0)
Detail solution
Let's take the limit
$$\lim_{x \to 0^+}\left(\frac{x^{2} + 6 x}{x}\right)$$
transform
$$\lim_{x \to 0^+}\left(\frac{x^{2} + 6 x}{x}\right)$$
=
$$\lim_{x \to 0^+}\left(\frac{x \left(x + 6\right)}{x}\right)$$
=
$$\lim_{x \to 0^+}\left(x + 6\right) = $$
$$6 = $$
= 6

The final answer:
$$\lim_{x \to 0^+}\left(\frac{x^{2} + 6 x}{x}\right) = 6$$
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
Rapid solution [src]
6
$$6$$
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to 0^-}\left(\frac{x^{2} + 6 x}{x}\right) = 6$$
More at x→0 from the left
$$\lim_{x \to 0^+}\left(\frac{x^{2} + 6 x}{x}\right) = 6$$
$$\lim_{x \to \infty}\left(\frac{x^{2} + 6 x}{x}\right) = \infty$$
More at x→oo
$$\lim_{x \to 1^-}\left(\frac{x^{2} + 6 x}{x}\right) = 7$$
More at x→1 from the left
$$\lim_{x \to 1^+}\left(\frac{x^{2} + 6 x}{x}\right) = 7$$
More at x→1 from the right
$$\lim_{x \to -\infty}\left(\frac{x^{2} + 6 x}{x}\right) = -\infty$$
More at x→-oo
One‐sided limits [src]
     / 2      \
     |x  + 6*x|
 lim |--------|
x->0+\   x    /
$$\lim_{x \to 0^+}\left(\frac{x^{2} + 6 x}{x}\right)$$
6
$$6$$
= 6.0
     / 2      \
     |x  + 6*x|
 lim |--------|
x->0-\   x    /
$$\lim_{x \to 0^-}\left(\frac{x^{2} + 6 x}{x}\right)$$
6
$$6$$
= 6.0
= 6.0
Numerical answer [src]
6.0
6.0
The graph
Limit of the function (x^2+6*x)/x