Mister Exam
Lang:
EN
EN
ES
RU
Other calculators:
Integral Step by Step
Derivative Step by Step
Differential equations Step by Step
How to use it?
Limit of the function
:
Limit of (-16+x^2-6*x)/(-2+x+x^2)
Limit of -1+sqrt(5)-x-2/(sqrt(2)-x)
Limit of (-cos(x)^3+cos(x))/(4*x*sin(x))
Limit of cos((1+x)/x^3)
Graphing y =
:
x^2+5*x
Integral of d{x}
:
x^2+5*x
Factor polynomial
:
x^2+5*x
Identical expressions
x^ two + five *x
x squared plus 5 multiply by x
x to the power of two plus five multiply by x
x2+5*x
x²+5*x
x to the power of 2+5*x
x^2+5x
x2+5x
Similar expressions
x^2-5*x
(x-x^3)/(8-x^2+5*x^3)
(3+x^2+4*x)/(6+x^2+5*x)
(-14+x^2+5*x)/(-2+x)
(1-x^2+5*x^4)/(3+x^4)
(6+x^2+5*x)/(20+x^2-12*x)
Limit of the function
/
x^2+5*x
Limit of the function x^2+5*x
at
→
Calculate the limit!
v
For end points:
---------
From the left (x0-)
From the right (x0+)
The graph:
from
to
Piecewise:
{
enter the piecewise function here
The solution
You have entered
[src]
/ 2 \ lim \x + 5*x/ x->oo
$$\lim_{x \to \infty}\left(x^{2} + 5 x\right)$$
Limit(x^2 + 5*x, x, oo, dir='-')
Detail solution
Let's take the limit
$$\lim_{x \to \infty}\left(x^{2} + 5 x\right)$$
Let's divide numerator and denominator by x^2:
$$\lim_{x \to \infty}\left(x^{2} + 5 x\right)$$ =
$$\lim_{x \to \infty}\left(\frac{1 + \frac{5}{x}}{\frac{1}{x^{2}}}\right)$$
Do Replacement
$$u = \frac{1}{x}$$
then
$$\lim_{x \to \infty}\left(\frac{1 + \frac{5}{x}}{\frac{1}{x^{2}}}\right) = \lim_{u \to 0^+}\left(\frac{5 u + 1}{u^{2}}\right)$$
=
$$\frac{0 \cdot 5 + 1}{0} = \infty$$
The final answer:
$$\lim_{x \to \infty}\left(x^{2} + 5 x\right) = \infty$$
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
Plot the graph
Rapid solution
[src]
oo
$$\infty$$
Expand and simplify
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to \infty}\left(x^{2} + 5 x\right) = \infty$$
$$\lim_{x \to 0^-}\left(x^{2} + 5 x\right) = 0$$
More at x→0 from the left
$$\lim_{x \to 0^+}\left(x^{2} + 5 x\right) = 0$$
More at x→0 from the right
$$\lim_{x \to 1^-}\left(x^{2} + 5 x\right) = 6$$
More at x→1 from the left
$$\lim_{x \to 1^+}\left(x^{2} + 5 x\right) = 6$$
More at x→1 from the right
$$\lim_{x \to -\infty}\left(x^{2} + 5 x\right) = \infty$$
More at x→-oo
The graph