Mister Exam

Other calculators:


x^2-7*x

Limit of the function x^2-7*x

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
     / 2      \
 lim \x  - 7*x/
x->3+          
$$\lim_{x \to 3^+}\left(x^{2} - 7 x\right)$$
Limit(x^2 - 7*x, x, 3)
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to 3^-}\left(x^{2} - 7 x\right) = -12$$
More at x→3 from the left
$$\lim_{x \to 3^+}\left(x^{2} - 7 x\right) = -12$$
$$\lim_{x \to \infty}\left(x^{2} - 7 x\right) = \infty$$
More at x→oo
$$\lim_{x \to 0^-}\left(x^{2} - 7 x\right) = 0$$
More at x→0 from the left
$$\lim_{x \to 0^+}\left(x^{2} - 7 x\right) = 0$$
More at x→0 from the right
$$\lim_{x \to 1^-}\left(x^{2} - 7 x\right) = -6$$
More at x→1 from the left
$$\lim_{x \to 1^+}\left(x^{2} - 7 x\right) = -6$$
More at x→1 from the right
$$\lim_{x \to -\infty}\left(x^{2} - 7 x\right) = \infty$$
More at x→-oo
Rapid solution [src]
-12
$$-12$$
One‐sided limits [src]
     / 2      \
 lim \x  - 7*x/
x->3+          
$$\lim_{x \to 3^+}\left(x^{2} - 7 x\right)$$
-12
$$-12$$
= -12.0
     / 2      \
 lim \x  - 7*x/
x->3-          
$$\lim_{x \to 3^-}\left(x^{2} - 7 x\right)$$
-12
$$-12$$
= -12.0
= -12.0
Numerical answer [src]
-12.0
-12.0
The graph
Limit of the function x^2-7*x