Mister Exam
Lang:
EN
EN
ES
RU
Other calculators:
Integral Step by Step
Derivative Step by Step
Differential equations Step by Step
How to use it?
Limit of the function
:
Limit of (-6+x^2-x)/(6+x^2-5*x)
Limit of log(1+x^2)/(-e^(-x)+cos(3*x))
Limit of -2+|-2+x|/x
Limit of (-4-8*x+8*x^2)/(3+8*x)
Graphing y =
:
x^2-5*x
Factor polynomial
:
x^2-5*x
Identical expressions
x^ two - five *x
x squared minus 5 multiply by x
x to the power of two minus five multiply by x
x2-5*x
x²-5*x
x to the power of 2-5*x
x^2-5x
x2-5x
Similar expressions
x^2+5*x
(-10+x^2-5*x)/(-25+x^2)
(4+x^2-5*x)/(-3+x^2+2*x)
(4-x)/(4+x^2-5*x)
Limit of the function
/
x^2-5*x
Limit of the function x^2-5*x
at
→
Calculate the limit!
v
For end points:
---------
From the left (x0-)
From the right (x0+)
The graph:
from
to
Piecewise:
{
enter the piecewise function here
The solution
You have entered
[src]
/ 2 \ lim \x - 5*x/ x->oo
$$\lim_{x \to \infty}\left(x^{2} - 5 x\right)$$
Limit(x^2 - 5*x, x, oo, dir='-')
Detail solution
Let's take the limit
$$\lim_{x \to \infty}\left(x^{2} - 5 x\right)$$
Let's divide numerator and denominator by x^2:
$$\lim_{x \to \infty}\left(x^{2} - 5 x\right)$$ =
$$\lim_{x \to \infty}\left(\frac{1 - \frac{5}{x}}{\frac{1}{x^{2}}}\right)$$
Do Replacement
$$u = \frac{1}{x}$$
then
$$\lim_{x \to \infty}\left(\frac{1 - \frac{5}{x}}{\frac{1}{x^{2}}}\right) = \lim_{u \to 0^+}\left(\frac{- 5 u + 1}{u^{2}}\right)$$
=
$$\frac{\left(-5\right) 0 + 1}{0} = \infty$$
The final answer:
$$\lim_{x \to \infty}\left(x^{2} - 5 x\right) = \infty$$
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
Plot the graph
Rapid solution
[src]
oo
$$\infty$$
Expand and simplify
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to \infty}\left(x^{2} - 5 x\right) = \infty$$
$$\lim_{x \to 0^-}\left(x^{2} - 5 x\right) = 0$$
More at x→0 from the left
$$\lim_{x \to 0^+}\left(x^{2} - 5 x\right) = 0$$
More at x→0 from the right
$$\lim_{x \to 1^-}\left(x^{2} - 5 x\right) = -4$$
More at x→1 from the left
$$\lim_{x \to 1^+}\left(x^{2} - 5 x\right) = -4$$
More at x→1 from the right
$$\lim_{x \to -\infty}\left(x^{2} - 5 x\right) = \infty$$
More at x→-oo
The graph