Mister Exam

Other calculators:


x^2/(2-x)

Limit of the function x^2/(2-x)

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
     /   2 \
     |  x  |
 lim |-----|
x->2+\2 - x/
$$\lim_{x \to 2^+}\left(\frac{x^{2}}{2 - x}\right)$$
Limit(x^2/(2 - x), x, 2)
Detail solution
Let's take the limit
$$\lim_{x \to 2^+}\left(\frac{x^{2}}{2 - x}\right)$$
transform
$$\lim_{x \to 2^+}\left(\frac{x^{2}}{2 - x}\right)$$
=
$$\lim_{x \to 2^+}\left(\frac{x^{2}}{2 - x}\right)$$
=
$$\lim_{x \to 2^+}\left(- \frac{x^{2}}{x - 2}\right) = $$
False

= -oo

The final answer:
$$\lim_{x \to 2^+}\left(\frac{x^{2}}{2 - x}\right) = -\infty$$
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
Rapid solution [src]
-oo
$$-\infty$$
One‐sided limits [src]
     /   2 \
     |  x  |
 lim |-----|
x->2+\2 - x/
$$\lim_{x \to 2^+}\left(\frac{x^{2}}{2 - x}\right)$$
-oo
$$-\infty$$
= -608.006622516556
     /   2 \
     |  x  |
 lim |-----|
x->2-\2 - x/
$$\lim_{x \to 2^-}\left(\frac{x^{2}}{2 - x}\right)$$
oo
$$\infty$$
= 600.006622516556
= 600.006622516556
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to 2^-}\left(\frac{x^{2}}{2 - x}\right) = -\infty$$
More at x→2 from the left
$$\lim_{x \to 2^+}\left(\frac{x^{2}}{2 - x}\right) = -\infty$$
$$\lim_{x \to \infty}\left(\frac{x^{2}}{2 - x}\right) = -\infty$$
More at x→oo
$$\lim_{x \to 0^-}\left(\frac{x^{2}}{2 - x}\right) = 0$$
More at x→0 from the left
$$\lim_{x \to 0^+}\left(\frac{x^{2}}{2 - x}\right) = 0$$
More at x→0 from the right
$$\lim_{x \to 1^-}\left(\frac{x^{2}}{2 - x}\right) = 1$$
More at x→1 from the left
$$\lim_{x \to 1^+}\left(\frac{x^{2}}{2 - x}\right) = 1$$
More at x→1 from the right
$$\lim_{x \to -\infty}\left(\frac{x^{2}}{2 - x}\right) = \infty$$
More at x→-oo
Numerical answer [src]
-608.006622516556
-608.006622516556
The graph
Limit of the function x^2/(2-x)