Mister Exam

Other calculators:


x^2/2

Limit of the function x^2/2

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
     / 2\
     |x |
 lim |--|
x->oo\2 /
$$\lim_{x \to \infty}\left(\frac{x^{2}}{2}\right)$$
Limit(x^2/2, x, oo, dir='-')
Detail solution
Let's take the limit
$$\lim_{x \to \infty}\left(\frac{x^{2}}{2}\right)$$
Let's divide numerator and denominator by x^2:
$$\lim_{x \to \infty}\left(\frac{x^{2}}{2}\right)$$ =
$$\lim_{x \to \infty} \frac{1}{2 \frac{1}{x^{2}}}$$
Do Replacement
$$u = \frac{1}{x}$$
then
$$\lim_{x \to \infty} \frac{1}{2 \frac{1}{x^{2}}} = \lim_{u \to 0^+}\left(\frac{1}{2 u^{2}}\right)$$
=
$$\frac{1}{0 \cdot 2} = \infty$$

The final answer:
$$\lim_{x \to \infty}\left(\frac{x^{2}}{2}\right) = \infty$$
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
Rapid solution [src]
oo
$$\infty$$
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to \infty}\left(\frac{x^{2}}{2}\right) = \infty$$
$$\lim_{x \to 0^-}\left(\frac{x^{2}}{2}\right) = 0$$
More at x→0 from the left
$$\lim_{x \to 0^+}\left(\frac{x^{2}}{2}\right) = 0$$
More at x→0 from the right
$$\lim_{x \to 1^-}\left(\frac{x^{2}}{2}\right) = \frac{1}{2}$$
More at x→1 from the left
$$\lim_{x \to 1^+}\left(\frac{x^{2}}{2}\right) = \frac{1}{2}$$
More at x→1 from the right
$$\lim_{x \to -\infty}\left(\frac{x^{2}}{2}\right) = \infty$$
More at x→-oo
The graph
Limit of the function x^2/2