Mister Exam

Other calculators:


x^2/log(x)

Limit of the function x^2/log(x)

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
     /   2  \
     |  x   |
 lim |------|
x->oo\log(x)/
limx(x2log(x))\lim_{x \to \infty}\left(\frac{x^{2}}{\log{\left(x \right)}}\right)
Limit(x^2/log(x), x, oo, dir='-')
Lopital's rule
We have indeterminateness of type
oo/oo,

i.e. limit for the numerator is
limxx2=\lim_{x \to \infty} x^{2} = \infty
and limit for the denominator is
limxlog(x)=\lim_{x \to \infty} \log{\left(x \right)} = \infty
Let's take derivatives of the numerator and denominator until we eliminate indeterninateness.
limx(x2log(x))\lim_{x \to \infty}\left(\frac{x^{2}}{\log{\left(x \right)}}\right)
=
limx(ddxx2ddxlog(x))\lim_{x \to \infty}\left(\frac{\frac{d}{d x} x^{2}}{\frac{d}{d x} \log{\left(x \right)}}\right)
=
limx(2x2)\lim_{x \to \infty}\left(2 x^{2}\right)
=
limx(2x2)\lim_{x \to \infty}\left(2 x^{2}\right)
=
\infty
It can be seen that we have applied Lopital's rule (we have taken derivatives with respect to the numerator and denominator) 1 time(s)
The graph
02468-8-6-4-2-1010-5050
Rapid solution [src]
oo
\infty
Other limits x→0, -oo, +oo, 1
limx(x2log(x))=\lim_{x \to \infty}\left(\frac{x^{2}}{\log{\left(x \right)}}\right) = \infty
limx0(x2log(x))=0\lim_{x \to 0^-}\left(\frac{x^{2}}{\log{\left(x \right)}}\right) = 0
More at x→0 from the left
limx0+(x2log(x))=0\lim_{x \to 0^+}\left(\frac{x^{2}}{\log{\left(x \right)}}\right) = 0
More at x→0 from the right
limx1(x2log(x))=\lim_{x \to 1^-}\left(\frac{x^{2}}{\log{\left(x \right)}}\right) = -\infty
More at x→1 from the left
limx1+(x2log(x))=\lim_{x \to 1^+}\left(\frac{x^{2}}{\log{\left(x \right)}}\right) = \infty
More at x→1 from the right
limx(x2log(x))=\lim_{x \to -\infty}\left(\frac{x^{2}}{\log{\left(x \right)}}\right) = \infty
More at x→-oo
The graph
Limit of the function x^2/log(x)