Mister Exam
Lang:
EN
EN
ES
RU
Other calculators:
Integral Step by Step
Derivative Step by Step
Differential equations Step by Step
How to use it?
Limit of the function
:
Limit of (5+x-3*x^2)/(4-x+2*x^2)
Limit of (4-x^2)/(3-x^2)
Limit of (3+2*x)/(1-5*x)
Limit of (1-2*cos(x))/sin(3*x)
Graphing y =
:
x^3+2*x
Factor polynomial
:
x^3+2*x
Integral of d{x}
:
x^3+2*x
Identical expressions
x^ three + two *x
x cubed plus 2 multiply by x
x to the power of three plus two multiply by x
x3+2*x
x³+2*x
x to the power of 3+2*x
x^3+2x
x3+2x
Similar expressions
(-2+x+x^3)/(-x^3+2*x)
((-1+x)/(2+x))^(3+2*x)
(3+x^2-x)/(-1+x^3+2*x^2)
x^3-2*x
8+x^3+2*x^4/3
2-x^2-5*x^3+2*x^5-x^4/3
Limit of the function
/
x^3+2*x
Limit of the function x^3+2*x
at
→
Calculate the limit!
v
For end points:
---------
From the left (x0-)
From the right (x0+)
The graph:
from
to
Piecewise:
{
enter the piecewise function here
The solution
You have entered
[src]
/ 3 \ lim \x + 2*x/ x->oo
$$\lim_{x \to \infty}\left(x^{3} + 2 x\right)$$
Limit(x^3 + 2*x, x, oo, dir='-')
Detail solution
Let's take the limit
$$\lim_{x \to \infty}\left(x^{3} + 2 x\right)$$
Let's divide numerator and denominator by x^3:
$$\lim_{x \to \infty}\left(x^{3} + 2 x\right)$$ =
$$\lim_{x \to \infty}\left(\frac{1 + \frac{2}{x^{2}}}{\frac{1}{x^{3}}}\right)$$
Do Replacement
$$u = \frac{1}{x}$$
then
$$\lim_{x \to \infty}\left(\frac{1 + \frac{2}{x^{2}}}{\frac{1}{x^{3}}}\right) = \lim_{u \to 0^+}\left(\frac{2 u^{2} + 1}{u^{3}}\right)$$
=
$$\frac{2 \cdot 0^{2} + 1}{0} = \infty$$
The final answer:
$$\lim_{x \to \infty}\left(x^{3} + 2 x\right) = \infty$$
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
Plot the graph
Rapid solution
[src]
oo
$$\infty$$
Expand and simplify
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to \infty}\left(x^{3} + 2 x\right) = \infty$$
$$\lim_{x \to 0^-}\left(x^{3} + 2 x\right) = 0$$
More at x→0 from the left
$$\lim_{x \to 0^+}\left(x^{3} + 2 x\right) = 0$$
More at x→0 from the right
$$\lim_{x \to 1^-}\left(x^{3} + 2 x\right) = 3$$
More at x→1 from the left
$$\lim_{x \to 1^+}\left(x^{3} + 2 x\right) = 3$$
More at x→1 from the right
$$\lim_{x \to -\infty}\left(x^{3} + 2 x\right) = -\infty$$
More at x→-oo
The graph