Mister Exam

Other calculators:


x^3+5*x

Limit of the function x^3+5*x

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
     / 3      \
 lim \x  + 5*x/
x->oo          
limx(x3+5x)\lim_{x \to \infty}\left(x^{3} + 5 x\right)
Limit(x^3 + 5*x, x, oo, dir='-')
Detail solution
Let's take the limit
limx(x3+5x)\lim_{x \to \infty}\left(x^{3} + 5 x\right)
Let's divide numerator and denominator by x^3:
limx(x3+5x)\lim_{x \to \infty}\left(x^{3} + 5 x\right) =
limx(1+5x21x3)\lim_{x \to \infty}\left(\frac{1 + \frac{5}{x^{2}}}{\frac{1}{x^{3}}}\right)
Do Replacement
u=1xu = \frac{1}{x}
then
limx(1+5x21x3)=limu0+(5u2+1u3)\lim_{x \to \infty}\left(\frac{1 + \frac{5}{x^{2}}}{\frac{1}{x^{3}}}\right) = \lim_{u \to 0^+}\left(\frac{5 u^{2} + 1}{u^{3}}\right)
=
502+10=\frac{5 \cdot 0^{2} + 1}{0} = \infty

The final answer:
limx(x3+5x)=\lim_{x \to \infty}\left(x^{3} + 5 x\right) = \infty
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
02468-8-6-4-2-1010-20002000
Rapid solution [src]
oo
\infty
Other limits x→0, -oo, +oo, 1
limx(x3+5x)=\lim_{x \to \infty}\left(x^{3} + 5 x\right) = \infty
limx0(x3+5x)=0\lim_{x \to 0^-}\left(x^{3} + 5 x\right) = 0
More at x→0 from the left
limx0+(x3+5x)=0\lim_{x \to 0^+}\left(x^{3} + 5 x\right) = 0
More at x→0 from the right
limx1(x3+5x)=6\lim_{x \to 1^-}\left(x^{3} + 5 x\right) = 6
More at x→1 from the left
limx1+(x3+5x)=6\lim_{x \to 1^+}\left(x^{3} + 5 x\right) = 6
More at x→1 from the right
limx(x3+5x)=\lim_{x \to -\infty}\left(x^{3} + 5 x\right) = -\infty
More at x→-oo
The graph
Limit of the function x^3+5*x