Mister Exam

Other calculators:


x^3*exp(x^2)

Limit of the function x^3*exp(x^2)

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
     /    / 2\\
     | 3  \x /|
 lim \x *e    /
x->0+          
$$\lim_{x \to 0^+}\left(x^{3} e^{x^{2}}\right)$$
Limit(x^3*exp(x^2), x, 0)
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
Rapid solution [src]
0
$$0$$
One‐sided limits [src]
     /    / 2\\
     | 3  \x /|
 lim \x *e    /
x->0+          
$$\lim_{x \to 0^+}\left(x^{3} e^{x^{2}}\right)$$
0
$$0$$
= 1.29673473149388e-29
     /    / 2\\
     | 3  \x /|
 lim \x *e    /
x->0-          
$$\lim_{x \to 0^-}\left(x^{3} e^{x^{2}}\right)$$
0
$$0$$
= -1.29673473149388e-29
= -1.29673473149388e-29
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to 0^-}\left(x^{3} e^{x^{2}}\right) = 0$$
More at x→0 from the left
$$\lim_{x \to 0^+}\left(x^{3} e^{x^{2}}\right) = 0$$
$$\lim_{x \to \infty}\left(x^{3} e^{x^{2}}\right) = \infty$$
More at x→oo
$$\lim_{x \to 1^-}\left(x^{3} e^{x^{2}}\right) = e$$
More at x→1 from the left
$$\lim_{x \to 1^+}\left(x^{3} e^{x^{2}}\right) = e$$
More at x→1 from the right
$$\lim_{x \to -\infty}\left(x^{3} e^{x^{2}}\right) = -\infty$$
More at x→-oo
Numerical answer [src]
1.29673473149388e-29
1.29673473149388e-29
The graph
Limit of the function x^3*exp(x^2)