Mister Exam
Lang:
EN
EN
ES
RU
Other calculators:
Integral Step by Step
Derivative Step by Step
Differential equations Step by Step
How to use it?
Limit of the function
:
Limit of x^2*(1/3-cos(8*x)/3)
Limit of (-2+x^2-x)/(-2+x+3*x^2)
Limit of (-1+sin(x))/cos(x)
Limit of (-2*sin(x)+sin(2*x))/(x*log(cos(5*x)))
Graphing y =
:
x^3-x^4
Factor polynomial
:
x^3-x^4
x^3-x^4
Identical expressions
x^ three -x^ four
x cubed minus x to the power of 4
x to the power of three minus x to the power of four
x3-x4
x³-x⁴
x to the power of 3-x to the power of 4
Similar expressions
x^3+x^4
Limit of the function
/
x^3-x^4
Limit of the function x^3-x^4
at
→
Calculate the limit!
v
For end points:
---------
From the left (x0-)
From the right (x0+)
The graph:
from
to
Piecewise:
{
enter the piecewise function here
The solution
You have entered
[src]
/ 3 4\ lim \x - x / x->oo
$$\lim_{x \to \infty}\left(- x^{4} + x^{3}\right)$$
Limit(x^3 - x^4, x, oo, dir='-')
Detail solution
Let's take the limit
$$\lim_{x \to \infty}\left(- x^{4} + x^{3}\right)$$
Let's divide numerator and denominator by x^4:
$$\lim_{x \to \infty}\left(- x^{4} + x^{3}\right)$$ =
$$\lim_{x \to \infty}\left(\frac{-1 + \frac{1}{x}}{\frac{1}{x^{4}}}\right)$$
Do Replacement
$$u = \frac{1}{x}$$
then
$$\lim_{x \to \infty}\left(\frac{-1 + \frac{1}{x}}{\frac{1}{x^{4}}}\right) = \lim_{u \to 0^+}\left(\frac{u - 1}{u^{4}}\right)$$
=
$$\frac{-1}{0} = -\infty$$
The final answer:
$$\lim_{x \to \infty}\left(- x^{4} + x^{3}\right) = -\infty$$
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
Plot the graph
Rapid solution
[src]
-oo
$$-\infty$$
Expand and simplify
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to \infty}\left(- x^{4} + x^{3}\right) = -\infty$$
$$\lim_{x \to 0^-}\left(- x^{4} + x^{3}\right) = 0$$
More at x→0 from the left
$$\lim_{x \to 0^+}\left(- x^{4} + x^{3}\right) = 0$$
More at x→0 from the right
$$\lim_{x \to 1^-}\left(- x^{4} + x^{3}\right) = 0$$
More at x→1 from the left
$$\lim_{x \to 1^+}\left(- x^{4} + x^{3}\right) = 0$$
More at x→1 from the right
$$\lim_{x \to -\infty}\left(- x^{4} + x^{3}\right) = -\infty$$
More at x→-oo
The graph