Mister Exam

Other calculators:


x^(7/6)

Limit of the function x^(7/6)

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
       7/6
 lim  x   
x->-1+    
$$\lim_{x \to -1^+} x^{\frac{7}{6}}$$
Limit(x^(7/6), x, -1)
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
One‐sided limits [src]
       7/6
 lim  x   
x->-1+    
$$\lim_{x \to -1^+} x^{\frac{7}{6}}$$
 6 ____
-\/ -1 
$$- \sqrt[6]{-1}$$
= (-0.866025403784439 - 0.5j)
       7/6
 lim  x   
x->-1-    
$$\lim_{x \to -1^-} x^{\frac{7}{6}}$$
 6 ____
-\/ -1 
$$- \sqrt[6]{-1}$$
= (-0.866025403784439 - 0.5j)
= (-0.866025403784439 - 0.5j)
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to -1^-} x^{\frac{7}{6}} = - \sqrt[6]{-1}$$
More at x→-1 from the left
$$\lim_{x \to -1^+} x^{\frac{7}{6}} = - \sqrt[6]{-1}$$
$$\lim_{x \to \infty} x^{\frac{7}{6}} = \infty$$
More at x→oo
$$\lim_{x \to 0^-} x^{\frac{7}{6}} = 0$$
More at x→0 from the left
$$\lim_{x \to 0^+} x^{\frac{7}{6}} = 0$$
More at x→0 from the right
$$\lim_{x \to 1^-} x^{\frac{7}{6}} = 1$$
More at x→1 from the left
$$\lim_{x \to 1^+} x^{\frac{7}{6}} = 1$$
More at x→1 from the right
$$\lim_{x \to -\infty} x^{\frac{7}{6}} = - \infty \sqrt[6]{-1}$$
More at x→-oo
Rapid solution [src]
 6 ____
-\/ -1 
$$- \sqrt[6]{-1}$$
Numerical answer [src]
(-0.866025403784439 - 0.5j)
(-0.866025403784439 - 0.5j)
The graph
Limit of the function x^(7/6)