Mister Exam

Other calculators:


x^9

Limit of the function x^9

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
      9
 lim x 
x->oo  
limxx9\lim_{x \to \infty} x^{9}
Limit(x^9, x, oo, dir='-')
Detail solution
Let's take the limit
limxx9\lim_{x \to \infty} x^{9}
Let's divide numerator and denominator by x^9:
limxx9\lim_{x \to \infty} x^{9} =
limx11x9\lim_{x \to \infty} \frac{1}{\frac{1}{x^{9}}}
Do Replacement
u=1xu = \frac{1}{x}
then
limx11x9=limu0+1u9\lim_{x \to \infty} \frac{1}{\frac{1}{x^{9}}} = \lim_{u \to 0^+} \frac{1}{u^{9}}
=
10=\frac{1}{0} = \infty

The final answer:
limxx9=\lim_{x \to \infty} x^{9} = \infty
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
02468-8-6-4-2-1010-20000000002000000000
Other limits x→0, -oo, +oo, 1
limxx9=\lim_{x \to \infty} x^{9} = \infty
limx0x9=0\lim_{x \to 0^-} x^{9} = 0
More at x→0 from the left
limx0+x9=0\lim_{x \to 0^+} x^{9} = 0
More at x→0 from the right
limx1x9=1\lim_{x \to 1^-} x^{9} = 1
More at x→1 from the left
limx1+x9=1\lim_{x \to 1^+} x^{9} = 1
More at x→1 from the right
limxx9=\lim_{x \to -\infty} x^{9} = -\infty
More at x→-oo
Rapid solution [src]
oo
\infty
The graph
Limit of the function x^9