$$\lim_{x \to \infty} \left(\frac{1}{x^{2}}\right)^{1 \cdot \frac{1}{x}} = 1$$
$$\lim_{x \to 0^-} \left(\frac{1}{x^{2}}\right)^{1 \cdot \frac{1}{x}} = 0$$
More at x→0 from the left$$\lim_{x \to 0^+} \left(\frac{1}{x^{2}}\right)^{1 \cdot \frac{1}{x}} = \infty$$
More at x→0 from the right$$\lim_{x \to 1^-} \left(\frac{1}{x^{2}}\right)^{1 \cdot \frac{1}{x}} = 1$$
More at x→1 from the left$$\lim_{x \to 1^+} \left(\frac{1}{x^{2}}\right)^{1 \cdot \frac{1}{x}} = 1$$
More at x→1 from the right$$\lim_{x \to -\infty} \left(\frac{1}{x^{2}}\right)^{1 \cdot \frac{1}{x}} = 1$$
More at x→-oo