Mister Exam

Other calculators:


x^(-3/2)

Limit of the function x^(-3/2)

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
      1  
 lim ----
x->0+ 3/2
     x   
$$\lim_{x \to 0^+} \frac{1}{x^{\frac{3}{2}}}$$
Limit(x^(-3/2), x, 0)
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
Rapid solution [src]
oo
$$\infty$$
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to 0^-} \frac{1}{x^{\frac{3}{2}}} = \infty$$
More at x→0 from the left
$$\lim_{x \to 0^+} \frac{1}{x^{\frac{3}{2}}} = \infty$$
$$\lim_{x \to \infty} \frac{1}{x^{\frac{3}{2}}} = 0$$
More at x→oo
$$\lim_{x \to 1^-} \frac{1}{x^{\frac{3}{2}}} = 1$$
More at x→1 from the left
$$\lim_{x \to 1^+} \frac{1}{x^{\frac{3}{2}}} = 1$$
More at x→1 from the right
$$\lim_{x \to -\infty} \frac{1}{x^{\frac{3}{2}}} = 0$$
More at x→-oo
One‐sided limits [src]
      1  
 lim ----
x->0+ 3/2
     x   
$$\lim_{x \to 0^+} \frac{1}{x^{\frac{3}{2}}}$$
oo
$$\infty$$
= 1855.51906484412
      1  
 lim ----
x->0- 3/2
     x   
$$\lim_{x \to 0^-} \frac{1}{x^{\frac{3}{2}}}$$
oo*I
$$\infty i$$
= (0.0 + 1855.51906484412j)
= (0.0 + 1855.51906484412j)
Numerical answer [src]
1855.51906484412
1855.51906484412
The graph
Limit of the function x^(-3/2)