Mister Exam
Lang:
EN
EN
ES
RU
Other calculators:
Integral Step by Step
Derivative Step by Step
Differential equations Step by Step
How to use it?
Limit of the function
:
Limit of ((5+6*x)/(-10+x))^(5*x)
Limit of (-4-7*x+2*x^2)/(4-13*x+3*x^2)
Limit of (-12+x^2-4*x)/(48+x^2-14*x)
Limit of (-1+e^(2*x))/(3*x)
Integral of d{x}
:
x^(-3/4)
Graphing y =
:
x^(-3/4)
Identical expressions
x^(- three / four)
x to the power of ( minus 3 divide by 4)
x to the power of ( minus three divide by four)
x(-3/4)
x-3/4
x^-3/4
x^(-3 divide by 4)
Similar expressions
x^(3/4)
Limit of the function
/
x^(-3/4)
Limit of the function x^(-3/4)
at
→
Calculate the limit!
v
For end points:
---------
From the left (x0-)
From the right (x0+)
The graph:
from
to
Piecewise:
{
enter the piecewise function here
The solution
You have entered
[src]
1 lim ---- x->oo 3/4 x
lim
x
→
∞
1
x
3
4
\lim_{x \to \infty} \frac{1}{x^{\frac{3}{4}}}
x
→
∞
lim
x
4
3
1
Limit(x^(-3/4), x, oo, dir='-')
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
0
2
4
6
8
-8
-6
-4
-2
-10
10
0
10
Plot the graph
Rapid solution
[src]
0
0
0
0
Expand and simplify
Other limits x→0, -oo, +oo, 1
lim
x
→
∞
1
x
3
4
=
0
\lim_{x \to \infty} \frac{1}{x^{\frac{3}{4}}} = 0
x
→
∞
lim
x
4
3
1
=
0
lim
x
→
0
−
1
x
3
4
=
−
∞
−
1
4
\lim_{x \to 0^-} \frac{1}{x^{\frac{3}{4}}} = - \infty \sqrt[4]{-1}
x
→
0
−
lim
x
4
3
1
=
−
∞
4
−
1
More at x→0 from the left
lim
x
→
0
+
1
x
3
4
=
∞
\lim_{x \to 0^+} \frac{1}{x^{\frac{3}{4}}} = \infty
x
→
0
+
lim
x
4
3
1
=
∞
More at x→0 from the right
lim
x
→
1
−
1
x
3
4
=
1
\lim_{x \to 1^-} \frac{1}{x^{\frac{3}{4}}} = 1
x
→
1
−
lim
x
4
3
1
=
1
More at x→1 from the left
lim
x
→
1
+
1
x
3
4
=
1
\lim_{x \to 1^+} \frac{1}{x^{\frac{3}{4}}} = 1
x
→
1
+
lim
x
4
3
1
=
1
More at x→1 from the right
lim
x
→
−
∞
1
x
3
4
=
0
\lim_{x \to -\infty} \frac{1}{x^{\frac{3}{4}}} = 0
x
→
−
∞
lim
x
4
3
1
=
0
More at x→-oo
The graph