Mister Exam
Lang:
EN
EN
ES
RU
Other calculators:
Integral Step by Step
Derivative Step by Step
Differential equations Step by Step
How to use it?
Limit of the function
:
Limit of 10+x^2+3*x^3+8*x
Limit of (-2+sqrt(x))/(-4+x^2)
Limit of x+2*x^3+5*x^4-x^2/3
Limit of (-x^3+2*x+5*x^4)/(1+x^4-8*x^3)
Graphing y =
:
x^(-3)
Derivative of
:
x^(-3)
Integral of d{x}
:
x^(-3)
Identical expressions
x^(- three)
x to the power of ( minus 3)
x to the power of ( minus three)
x(-3)
x-3
x^-3
Similar expressions
cot(4+2*x)^(-3)
(1+4/(1+4*x))^(-3+2*x)
(1+4*x)^((-3+x)/x)
(1+2/x)^(-3*x)
x^(3)
Limit of the function
/
x^(-3)
Limit of the function x^(-3)
at
→
Calculate the limit!
v
For end points:
---------
From the left (x0-)
From the right (x0+)
The graph:
from
to
Piecewise:
{
enter the piecewise function here
The solution
You have entered
[src]
1 lim -- x->oo 3 x
$$\lim_{x \to \infty} \frac{1}{x^{3}}$$
Limit(x^(-3), x, oo, dir='-')
Detail solution
Let's take the limit
$$\lim_{x \to \infty} \frac{1}{x^{3}}$$
Let's divide numerator and denominator by x^3:
$$\lim_{x \to \infty} \frac{1}{x^{3}}$$ =
$$\lim_{x \to \infty}\left(\frac{1}{x^{3}}\right)$$
Do Replacement
$$u = \frac{1}{x}$$
then
$$\lim_{x \to \infty}\left(\frac{1}{x^{3}}\right) = \lim_{u \to 0^+} u^{3}$$
=
$$0^{3} = 0$$
The final answer:
$$\lim_{x \to \infty} \frac{1}{x^{3}} = 0$$
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
Plot the graph
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to \infty} \frac{1}{x^{3}} = 0$$
$$\lim_{x \to 0^-} \frac{1}{x^{3}} = -\infty$$
More at x→0 from the left
$$\lim_{x \to 0^+} \frac{1}{x^{3}} = \infty$$
More at x→0 from the right
$$\lim_{x \to 1^-} \frac{1}{x^{3}} = 1$$
More at x→1 from the left
$$\lim_{x \to 1^+} \frac{1}{x^{3}} = 1$$
More at x→1 from the right
$$\lim_{x \to -\infty} \frac{1}{x^{3}} = 0$$
More at x→-oo
Rapid solution
[src]
0
$$0$$
Expand and simplify
The graph