Mister Exam

Other calculators:


x^(-3)

Limit of the function x^(-3)

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
     1 
 lim --
x->oo 3
     x 
$$\lim_{x \to \infty} \frac{1}{x^{3}}$$
Limit(x^(-3), x, oo, dir='-')
Detail solution
Let's take the limit
$$\lim_{x \to \infty} \frac{1}{x^{3}}$$
Let's divide numerator and denominator by x^3:
$$\lim_{x \to \infty} \frac{1}{x^{3}}$$ =
$$\lim_{x \to \infty}\left(\frac{1}{x^{3}}\right)$$
Do Replacement
$$u = \frac{1}{x}$$
then
$$\lim_{x \to \infty}\left(\frac{1}{x^{3}}\right) = \lim_{u \to 0^+} u^{3}$$
=
$$0^{3} = 0$$

The final answer:
$$\lim_{x \to \infty} \frac{1}{x^{3}} = 0$$
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to \infty} \frac{1}{x^{3}} = 0$$
$$\lim_{x \to 0^-} \frac{1}{x^{3}} = -\infty$$
More at x→0 from the left
$$\lim_{x \to 0^+} \frac{1}{x^{3}} = \infty$$
More at x→0 from the right
$$\lim_{x \to 1^-} \frac{1}{x^{3}} = 1$$
More at x→1 from the left
$$\lim_{x \to 1^+} \frac{1}{x^{3}} = 1$$
More at x→1 from the right
$$\lim_{x \to -\infty} \frac{1}{x^{3}} = 0$$
More at x→-oo
Rapid solution [src]
0
$$0$$
The graph
Limit of the function x^(-3)