Mister Exam

Other calculators:


x^(-6)

Limit of the function x^(-6)

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
     1 
 lim --
x->0+ 6
     x 
$$\lim_{x \to 0^+} \frac{1}{x^{6}}$$
Limit(x^(-6), x, 0)
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
Rapid solution [src]
oo
$$\infty$$
One‐sided limits [src]
     1 
 lim --
x->0+ 6
     x 
$$\lim_{x \to 0^+} \frac{1}{x^{6}}$$
oo
$$\infty$$
= 11853911588401.0
     1 
 lim --
x->0- 6
     x 
$$\lim_{x \to 0^-} \frac{1}{x^{6}}$$
oo
$$\infty$$
= 11853911588401.0
= 11853911588401.0
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to 0^-} \frac{1}{x^{6}} = \infty$$
More at x→0 from the left
$$\lim_{x \to 0^+} \frac{1}{x^{6}} = \infty$$
$$\lim_{x \to \infty} \frac{1}{x^{6}} = 0$$
More at x→oo
$$\lim_{x \to 1^-} \frac{1}{x^{6}} = 1$$
More at x→1 from the left
$$\lim_{x \to 1^+} \frac{1}{x^{6}} = 1$$
More at x→1 from the right
$$\lim_{x \to -\infty} \frac{1}{x^{6}} = 0$$
More at x→-oo
Numerical answer [src]
11853911588401.0
11853911588401.0
The graph
Limit of the function x^(-6)