Mister Exam
Lang:
EN
EN
ES
RU
Other calculators:
Integral Step by Step
Derivative Step by Step
Differential equations Step by Step
How to use it?
Limit of the function
:
Limit of (x+sqrt(10+x-x^2))/(sqrt(2-7*x)+2*x)
Limit of (-1+x^m)/(-1+x)
Limit of x*a^(-x)
Limit of -4+x+x^3
Integral of d{x}
:
x^(-6)
Identical expressions
x^(- six)
x to the power of ( minus 6)
x to the power of ( minus six)
x(-6)
x-6
x^-6
Similar expressions
x^(6)
Limit of the function
/
x^(-6)
Limit of the function x^(-6)
at
→
Calculate the limit!
v
For end points:
---------
From the left (x0-)
From the right (x0+)
The graph:
from
to
Piecewise:
{
enter the piecewise function here
The solution
You have entered
[src]
1 lim -- x->0+ 6 x
$$\lim_{x \to 0^+} \frac{1}{x^{6}}$$
Limit(x^(-6), x, 0)
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
Plot the graph
Rapid solution
[src]
oo
$$\infty$$
Expand and simplify
One‐sided limits
[src]
1 lim -- x->0+ 6 x
$$\lim_{x \to 0^+} \frac{1}{x^{6}}$$
oo
$$\infty$$
= 11853911588401.0
1 lim -- x->0- 6 x
$$\lim_{x \to 0^-} \frac{1}{x^{6}}$$
oo
$$\infty$$
= 11853911588401.0
= 11853911588401.0
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to 0^-} \frac{1}{x^{6}} = \infty$$
More at x→0 from the left
$$\lim_{x \to 0^+} \frac{1}{x^{6}} = \infty$$
$$\lim_{x \to \infty} \frac{1}{x^{6}} = 0$$
More at x→oo
$$\lim_{x \to 1^-} \frac{1}{x^{6}} = 1$$
More at x→1 from the left
$$\lim_{x \to 1^+} \frac{1}{x^{6}} = 1$$
More at x→1 from the right
$$\lim_{x \to -\infty} \frac{1}{x^{6}} = 0$$
More at x→-oo
Numerical answer
[src]
11853911588401.0
11853911588401.0
The graph