Mister Exam

Other calculators:


x^5*cos(x)

Limit of the function x^5*cos(x)

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
     / 5       \
 lim \x *cos(x)/
x->2+           
$$\lim_{x \to 2^+}\left(x^{5} \cos{\left(x \right)}\right)$$
Limit(x^5*cos(x), x, 2)
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
One‐sided limits [src]
     / 5       \
 lim \x *cos(x)/
x->2+           
$$\lim_{x \to 2^+}\left(x^{5} \cos{\left(x \right)}\right)$$
32*cos(2)
$$32 \cos{\left(2 \right)}$$
= -13.3166987695086
     / 5       \
 lim \x *cos(x)/
x->2-           
$$\lim_{x \to 2^-}\left(x^{5} \cos{\left(x \right)}\right)$$
32*cos(2)
$$32 \cos{\left(2 \right)}$$
= -13.3166987695086
= -13.3166987695086
Rapid solution [src]
32*cos(2)
$$32 \cos{\left(2 \right)}$$
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to 2^-}\left(x^{5} \cos{\left(x \right)}\right) = 32 \cos{\left(2 \right)}$$
More at x→2 from the left
$$\lim_{x \to 2^+}\left(x^{5} \cos{\left(x \right)}\right) = 32 \cos{\left(2 \right)}$$
$$\lim_{x \to \infty}\left(x^{5} \cos{\left(x \right)}\right) = \infty \operatorname{sign}{\left(\left\langle -1, 1\right\rangle \right)}$$
More at x→oo
$$\lim_{x \to 0^-}\left(x^{5} \cos{\left(x \right)}\right) = 0$$
More at x→0 from the left
$$\lim_{x \to 0^+}\left(x^{5} \cos{\left(x \right)}\right) = 0$$
More at x→0 from the right
$$\lim_{x \to 1^-}\left(x^{5} \cos{\left(x \right)}\right) = \cos{\left(1 \right)}$$
More at x→1 from the left
$$\lim_{x \to 1^+}\left(x^{5} \cos{\left(x \right)}\right) = \cos{\left(1 \right)}$$
More at x→1 from the right
$$\lim_{x \to -\infty}\left(x^{5} \cos{\left(x \right)}\right) = - \infty \operatorname{sign}{\left(\left\langle -1, 1\right\rangle \right)}$$
More at x→-oo
Numerical answer [src]
-13.3166987695086
-13.3166987695086
The graph
Limit of the function x^5*cos(x)