Mister Exam
Lang:
EN
EN
ES
RU
Other calculators:
Integral Step by Step
Derivative Step by Step
Differential equations Step by Step
How to use it?
Limit of the function
:
Limit of ((3+x)^2+(3-x)^2)/((3-x)^2-(3+x)^2)
Limit of (-1+x)/(-2+sqrt(3+x))
Limit of (-x+tan(x))/x^3
Limit of (-1+sqrt(x))/(-3+x)
Graphing y =
:
x^8
Derivative of
:
x^8
Integral of d{x}
:
x^8
Identical expressions
x^ eight
x to the power of 8
x to the power of eight
x8
x⁸
Similar expressions
x^(-x)-6/(10+x^8)
(-6+x^(-x))/(10+x^8)
(1+x^8-2*x)/(1+x^4-2*x)
(1+2/x)^(8*x)
Limit of the function
/
x^8
Limit of the function x^8
at
→
Calculate the limit!
v
For end points:
---------
From the left (x0-)
From the right (x0+)
The graph:
from
to
Piecewise:
{
enter the piecewise function here
The solution
You have entered
[src]
8 lim x x->oo
$$\lim_{x \to \infty} x^{8}$$
Limit(x^8, x, oo, dir='-')
Detail solution
Let's take the limit
$$\lim_{x \to \infty} x^{8}$$
Let's divide numerator and denominator by x^8:
$$\lim_{x \to \infty} x^{8}$$ =
$$\lim_{x \to \infty} \frac{1}{\frac{1}{x^{8}}}$$
Do Replacement
$$u = \frac{1}{x}$$
then
$$\lim_{x \to \infty} \frac{1}{\frac{1}{x^{8}}} = \lim_{u \to 0^+} \frac{1}{u^{8}}$$
=
$$\frac{1}{0} = \infty$$
The final answer:
$$\lim_{x \to \infty} x^{8} = \infty$$
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
Plot the graph
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to \infty} x^{8} = \infty$$
$$\lim_{x \to 0^-} x^{8} = 0$$
More at x→0 from the left
$$\lim_{x \to 0^+} x^{8} = 0$$
More at x→0 from the right
$$\lim_{x \to 1^-} x^{8} = 1$$
More at x→1 from the left
$$\lim_{x \to 1^+} x^{8} = 1$$
More at x→1 from the right
$$\lim_{x \to -\infty} x^{8} = \infty$$
More at x→-oo
Rapid solution
[src]
oo
$$\infty$$
Expand and simplify
The graph