Mister Exam

Other calculators:


x^e

Limit of the function x^e

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
      E
 lim x 
x->0+  
limx0+xe\lim_{x \to 0^+} x^{e}
Limit(x^E, x, 0)
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
02468-8-6-4-2-101001000
Rapid solution [src]
0
00
One‐sided limits [src]
      E
 lim x 
x->0+  
limx0+xe\lim_{x \to 0^+} x^{e}
0
00
= 5.53639714030193e-10
      E
 lim x 
x->0-  
limx0xe\lim_{x \to 0^-} x^{e}
0
00
= (-3.63290818199403e-10 + 4.35999625826301e-10j)
= (-3.63290818199403e-10 + 4.35999625826301e-10j)
Other limits x→0, -oo, +oo, 1
limx0xe=0\lim_{x \to 0^-} x^{e} = 0
More at x→0 from the left
limx0+xe=0\lim_{x \to 0^+} x^{e} = 0
limxxe=\lim_{x \to \infty} x^{e} = \infty
More at x→oo
limx1xe=1\lim_{x \to 1^-} x^{e} = 1
More at x→1 from the left
limx1+xe=1\lim_{x \to 1^+} x^{e} = 1
More at x→1 from the right
limxxe=sign((1)e)\lim_{x \to -\infty} x^{e} = \infty \operatorname{sign}{\left(\left(-1\right)^{e} \right)}
More at x→-oo
Numerical answer [src]
5.53639714030193e-10
5.53639714030193e-10
The graph
Limit of the function x^e