Mister Exam

Other calculators:


x^acot(x)

Limit of the function x^acot(x)

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
      acot(x)
 lim x       
x->0+        
$$\lim_{x \to 0^+} x^{\operatorname{acot}{\left(x \right)}}$$
Limit(x^acot(x), x, 0)
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
Rapid solution [src]
0
$$0$$
One‐sided limits [src]
      acot(x)
 lim x       
x->0+        
$$\lim_{x \to 0^+} x^{\operatorname{acot}{\left(x \right)}}$$
0
$$0$$
= 3.43151112916385e-6
      acot(x)
 lim x       
x->0-        
$$\lim_{x \to 0^-} x^{\operatorname{acot}{\left(x \right)}}$$
       /      2 \
       | -I*pi  |
       | -------|
       |    2   |
oo*sign\e       /
$$\infty \operatorname{sign}{\left(e^{- \frac{i \pi^{2}}{2}} \right)}$$
= (512.697493393348 + 2508.48953447685j)
= (512.697493393348 + 2508.48953447685j)
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to 0^-} x^{\operatorname{acot}{\left(x \right)}} = 0$$
More at x→0 from the left
$$\lim_{x \to 0^+} x^{\operatorname{acot}{\left(x \right)}} = 0$$
$$\lim_{x \to \infty} x^{\operatorname{acot}{\left(x \right)}} = 1$$
More at x→oo
$$\lim_{x \to 1^-} x^{\operatorname{acot}{\left(x \right)}} = 1$$
More at x→1 from the left
$$\lim_{x \to 1^+} x^{\operatorname{acot}{\left(x \right)}} = 1$$
More at x→1 from the right
$$\lim_{x \to -\infty} x^{\operatorname{acot}{\left(x \right)}} = 1$$
More at x→-oo
Numerical answer [src]
3.43151112916385e-6
3.43151112916385e-6
The graph
Limit of the function x^acot(x)