Mister Exam

Other calculators:

Limit of the function x+y^3

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
         /     3\
   lim   \x + y /
     ___         
x->\/ 3 +        
$$\lim_{x \to \sqrt{3}^+}\left(x + y^{3}\right)$$
Limit(x + y^3, x, sqrt(3))
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
One‐sided limits [src]
         /     3\
   lim   \x + y /
     ___         
x->\/ 3 +        
$$\lim_{x \to \sqrt{3}^+}\left(x + y^{3}\right)$$
  ___    3
\/ 3  + y 
$$y^{3} + \sqrt{3}$$
         /     3\
   lim   \x + y /
     ___         
x->\/ 3 -        
$$\lim_{x \to \sqrt{3}^-}\left(x + y^{3}\right)$$
  ___    3
\/ 3  + y 
$$y^{3} + \sqrt{3}$$
sqrt(3) + y^3
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to \sqrt{3}^-}\left(x + y^{3}\right) = y^{3} + \sqrt{3}$$
More at x→sqrt(3) from the left
$$\lim_{x \to \sqrt{3}^+}\left(x + y^{3}\right) = y^{3} + \sqrt{3}$$
$$\lim_{x \to \infty}\left(x + y^{3}\right) = \infty$$
More at x→oo
$$\lim_{x \to 0^-}\left(x + y^{3}\right) = y^{3}$$
More at x→0 from the left
$$\lim_{x \to 0^+}\left(x + y^{3}\right) = y^{3}$$
More at x→0 from the right
$$\lim_{x \to 1^-}\left(x + y^{3}\right) = y^{3} + 1$$
More at x→1 from the left
$$\lim_{x \to 1^+}\left(x + y^{3}\right) = y^{3} + 1$$
More at x→1 from the right
$$\lim_{x \to -\infty}\left(x + y^{3}\right) = -\infty$$
More at x→-oo
Rapid solution [src]
  ___    3
\/ 3  + y 
$$y^{3} + \sqrt{3}$$