$$\lim_{x \to p^-}\left(\frac{2 p + x}{p^{2}}\right) = \frac{3}{p}$$
More at x→p from the left$$\lim_{x \to p^+}\left(\frac{2 p + x}{p^{2}}\right) = \frac{3}{p}$$
$$\lim_{x \to \infty}\left(\frac{2 p + x}{p^{2}}\right) = \infty \operatorname{sign}{\left(\frac{1}{p^{2}} \right)}$$
More at x→oo$$\lim_{x \to 0^-}\left(\frac{2 p + x}{p^{2}}\right) = \frac{2}{p}$$
More at x→0 from the left$$\lim_{x \to 0^+}\left(\frac{2 p + x}{p^{2}}\right) = \frac{2}{p}$$
More at x→0 from the right$$\lim_{x \to 1^-}\left(\frac{2 p + x}{p^{2}}\right) = \frac{2 p + 1}{p^{2}}$$
More at x→1 from the left$$\lim_{x \to 1^+}\left(\frac{2 p + x}{p^{2}}\right) = \frac{2 p + 1}{p^{2}}$$
More at x→1 from the right$$\lim_{x \to -\infty}\left(\frac{2 p + x}{p^{2}}\right) = - \infty \operatorname{sign}{\left(\frac{1}{p^{2}} \right)}$$
More at x→-oo