Mister Exam

Other calculators:

Limit of the function (x+2*p)/p^2

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
     /x + 2*p\
 lim |-------|
x->p+|    2  |
     \   p   /
$$\lim_{x \to p^+}\left(\frac{2 p + x}{p^{2}}\right)$$
Limit((x + 2*p)/p^2, x, p)
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
Rapid solution [src]
3
-
p
$$\frac{3}{p}$$
One‐sided limits [src]
     /x + 2*p\
 lim |-------|
x->p+|    2  |
     \   p   /
$$\lim_{x \to p^+}\left(\frac{2 p + x}{p^{2}}\right)$$
3
-
p
$$\frac{3}{p}$$
     /x + 2*p\
 lim |-------|
x->p-|    2  |
     \   p   /
$$\lim_{x \to p^-}\left(\frac{2 p + x}{p^{2}}\right)$$
3
-
p
$$\frac{3}{p}$$
3/p
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to p^-}\left(\frac{2 p + x}{p^{2}}\right) = \frac{3}{p}$$
More at x→p from the left
$$\lim_{x \to p^+}\left(\frac{2 p + x}{p^{2}}\right) = \frac{3}{p}$$
$$\lim_{x \to \infty}\left(\frac{2 p + x}{p^{2}}\right) = \infty \operatorname{sign}{\left(\frac{1}{p^{2}} \right)}$$
More at x→oo
$$\lim_{x \to 0^-}\left(\frac{2 p + x}{p^{2}}\right) = \frac{2}{p}$$
More at x→0 from the left
$$\lim_{x \to 0^+}\left(\frac{2 p + x}{p^{2}}\right) = \frac{2}{p}$$
More at x→0 from the right
$$\lim_{x \to 1^-}\left(\frac{2 p + x}{p^{2}}\right) = \frac{2 p + 1}{p^{2}}$$
More at x→1 from the left
$$\lim_{x \to 1^+}\left(\frac{2 p + x}{p^{2}}\right) = \frac{2 p + 1}{p^{2}}$$
More at x→1 from the right
$$\lim_{x \to -\infty}\left(\frac{2 p + x}{p^{2}}\right) = - \infty \operatorname{sign}{\left(\frac{1}{p^{2}} \right)}$$
More at x→-oo