Mister Exam

Limit of the function x+cos(x)

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
 lim (x + cos(x))
x->0+            
$$\lim_{x \to 0^+}\left(x + \cos{\left(x \right)}\right)$$
Limit(x + cos(x), x, 0)
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
One‐sided limits [src]
 lim (x + cos(x))
x->0+            
$$\lim_{x \to 0^+}\left(x + \cos{\left(x \right)}\right)$$
1
$$1$$
= 1.0
 lim (x + cos(x))
x->0-            
$$\lim_{x \to 0^-}\left(x + \cos{\left(x \right)}\right)$$
1
$$1$$
= 1.0
= 1.0
Rapid solution [src]
1
$$1$$
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to 0^-}\left(x + \cos{\left(x \right)}\right) = 1$$
More at x→0 from the left
$$\lim_{x \to 0^+}\left(x + \cos{\left(x \right)}\right) = 1$$
$$\lim_{x \to \infty}\left(x + \cos{\left(x \right)}\right) = \infty$$
More at x→oo
$$\lim_{x \to 1^-}\left(x + \cos{\left(x \right)}\right) = \cos{\left(1 \right)} + 1$$
More at x→1 from the left
$$\lim_{x \to 1^+}\left(x + \cos{\left(x \right)}\right) = \cos{\left(1 \right)} + 1$$
More at x→1 from the right
$$\lim_{x \to -\infty}\left(x + \cos{\left(x \right)}\right) = -\infty$$
More at x→-oo
Numerical answer [src]
1.0
1.0
The graph
Limit of the function x+cos(x)