$$\lim_{x \to \infty}\left(x \sqrt{2 - x^{2}}\right) = \infty i$$ $$\lim_{x \to 0^-}\left(x \sqrt{2 - x^{2}}\right) = 0$$ More at x→0 from the left $$\lim_{x \to 0^+}\left(x \sqrt{2 - x^{2}}\right) = 0$$ More at x→0 from the right $$\lim_{x \to 1^-}\left(x \sqrt{2 - x^{2}}\right) = 1$$ More at x→1 from the left $$\lim_{x \to 1^+}\left(x \sqrt{2 - x^{2}}\right) = 1$$ More at x→1 from the right $$\lim_{x \to -\infty}\left(x \sqrt{2 - x^{2}}\right) = - \infty i$$ More at x→-oo