Mister Exam
Lang:
EN
EN
ES
RU
Other calculators:
Integral Step by Step
Derivative Step by Step
Differential equations Step by Step
How to use it?
Limit of the function
:
Limit of (6^(2*x)-7^(-2*x))/(-2*x+sin(3*x))
Limit of (5+x-3*x^2)/(4-x+2*x^2)
Limit of x^(4/x)
Limit of (-6+x^2-x)/(-4+x^2)
Integral of d{x}
:
x*sqrt(2-x)
Graphing y =
:
x*sqrt(2-x)
Identical expressions
x*sqrt(two -x)
x multiply by square root of (2 minus x)
x multiply by square root of (two minus x)
x*√(2-x)
xsqrt(2-x)
xsqrt2-x
Similar expressions
x*(x*sqrt(2)-x*sqrt(3))
x*sqrt(2+x)
x*(sqrt(2)-x*sqrt(3))
Limit of the function
/
x*sqrt(2-x)
Limit of the function x*sqrt(2-x)
at
→
Calculate the limit!
v
For end points:
---------
From the left (x0-)
From the right (x0+)
The graph:
from
to
Piecewise:
{
enter the piecewise function here
The solution
You have entered
[src]
/ _______\ lim \x*\/ 2 - x / x->oo
lim
x
→
∞
(
x
2
−
x
)
\lim_{x \to \infty}\left(x \sqrt{2 - x}\right)
x
→
∞
lim
(
x
2
−
x
)
Limit(x*sqrt(2 - x), x, oo, dir='-')
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
0
2
4
6
8
-8
-6
-4
-2
-10
10
-50
50
Plot the graph
Rapid solution
[src]
oo*I
∞
i
\infty i
∞
i
Expand and simplify
Other limits x→0, -oo, +oo, 1
lim
x
→
∞
(
x
2
−
x
)
=
∞
i
\lim_{x \to \infty}\left(x \sqrt{2 - x}\right) = \infty i
x
→
∞
lim
(
x
2
−
x
)
=
∞
i
lim
x
→
0
−
(
x
2
−
x
)
=
0
\lim_{x \to 0^-}\left(x \sqrt{2 - x}\right) = 0
x
→
0
−
lim
(
x
2
−
x
)
=
0
More at x→0 from the left
lim
x
→
0
+
(
x
2
−
x
)
=
0
\lim_{x \to 0^+}\left(x \sqrt{2 - x}\right) = 0
x
→
0
+
lim
(
x
2
−
x
)
=
0
More at x→0 from the right
lim
x
→
1
−
(
x
2
−
x
)
=
1
\lim_{x \to 1^-}\left(x \sqrt{2 - x}\right) = 1
x
→
1
−
lim
(
x
2
−
x
)
=
1
More at x→1 from the left
lim
x
→
1
+
(
x
2
−
x
)
=
1
\lim_{x \to 1^+}\left(x \sqrt{2 - x}\right) = 1
x
→
1
+
lim
(
x
2
−
x
)
=
1
More at x→1 from the right
lim
x
→
−
∞
(
x
2
−
x
)
=
−
∞
\lim_{x \to -\infty}\left(x \sqrt{2 - x}\right) = -\infty
x
→
−
∞
lim
(
x
2
−
x
)
=
−
∞
More at x→-oo
The graph