Mister Exam
Lang:
EN
EN
ES
RU
Other calculators:
Integral Step by Step
Derivative Step by Step
Differential equations Step by Step
How to use it?
Limit of the function
:
Limit of -1/(-3+x)+6/(-9+x^2)
Limit of (5+x-3*x^2)/(4-x+2*x^2)
Limit of -2+5*x+14*x^2/3
Limit of ((-1+5*x^2)/(-1+7*x^2))^(1+5*x)
Integral of d{x}
:
x*sqrt(1-x^2)
Identical expressions
x*sqrt(one -x^ two)
x multiply by square root of (1 minus x squared )
x multiply by square root of (one minus x to the power of two)
x*√(1-x^2)
x*sqrt(1-x2)
x*sqrt1-x2
x*sqrt(1-x²)
x*sqrt(1-x to the power of 2)
xsqrt(1-x^2)
xsqrt(1-x2)
xsqrt1-x2
xsqrt1-x^2
Similar expressions
x*sqrt(1+x^2)
Limit of the function
/
x*sqrt(1-x^2)
Limit of the function x*sqrt(1-x^2)
at
→
Calculate the limit!
v
For end points:
---------
From the left (x0-)
From the right (x0+)
The graph:
from
to
Piecewise:
{
enter the piecewise function here
The solution
You have entered
[src]
/ ________\ | / 2 | lim \x*\/ 1 - x / x->oo
lim
x
→
∞
(
x
1
−
x
2
)
\lim_{x \to \infty}\left(x \sqrt{1 - x^{2}}\right)
x
→
∞
lim
(
x
1
−
x
2
)
Limit(x*sqrt(1 - x^2), x, oo, dir='-')
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
0
2
4
6
8
-8
-6
-4
-2
-10
10
1
-1
Plot the graph
Rapid solution
[src]
oo*I
∞
i
\infty i
∞
i
Expand and simplify
Other limits x→0, -oo, +oo, 1
lim
x
→
∞
(
x
1
−
x
2
)
=
∞
i
\lim_{x \to \infty}\left(x \sqrt{1 - x^{2}}\right) = \infty i
x
→
∞
lim
(
x
1
−
x
2
)
=
∞
i
lim
x
→
0
−
(
x
1
−
x
2
)
=
0
\lim_{x \to 0^-}\left(x \sqrt{1 - x^{2}}\right) = 0
x
→
0
−
lim
(
x
1
−
x
2
)
=
0
More at x→0 from the left
lim
x
→
0
+
(
x
1
−
x
2
)
=
0
\lim_{x \to 0^+}\left(x \sqrt{1 - x^{2}}\right) = 0
x
→
0
+
lim
(
x
1
−
x
2
)
=
0
More at x→0 from the right
lim
x
→
1
−
(
x
1
−
x
2
)
=
0
\lim_{x \to 1^-}\left(x \sqrt{1 - x^{2}}\right) = 0
x
→
1
−
lim
(
x
1
−
x
2
)
=
0
More at x→1 from the left
lim
x
→
1
+
(
x
1
−
x
2
)
=
0
\lim_{x \to 1^+}\left(x \sqrt{1 - x^{2}}\right) = 0
x
→
1
+
lim
(
x
1
−
x
2
)
=
0
More at x→1 from the right
lim
x
→
−
∞
(
x
1
−
x
2
)
=
−
∞
i
\lim_{x \to -\infty}\left(x \sqrt{1 - x^{2}}\right) = - \infty i
x
→
−
∞
lim
(
x
1
−
x
2
)
=
−
∞
i
More at x→-oo
The graph