Mister Exam

Other calculators:


x*sqrt(1-x^2)

Limit of the function x*sqrt(1-x^2)

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
     /     ________\
     |    /      2 |
 lim \x*\/  1 - x  /
x->oo               
limx(x1x2)\lim_{x \to \infty}\left(x \sqrt{1 - x^{2}}\right)
Limit(x*sqrt(1 - x^2), x, oo, dir='-')
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
02468-8-6-4-2-10101-1
Rapid solution [src]
oo*I
i\infty i
Other limits x→0, -oo, +oo, 1
limx(x1x2)=i\lim_{x \to \infty}\left(x \sqrt{1 - x^{2}}\right) = \infty i
limx0(x1x2)=0\lim_{x \to 0^-}\left(x \sqrt{1 - x^{2}}\right) = 0
More at x→0 from the left
limx0+(x1x2)=0\lim_{x \to 0^+}\left(x \sqrt{1 - x^{2}}\right) = 0
More at x→0 from the right
limx1(x1x2)=0\lim_{x \to 1^-}\left(x \sqrt{1 - x^{2}}\right) = 0
More at x→1 from the left
limx1+(x1x2)=0\lim_{x \to 1^+}\left(x \sqrt{1 - x^{2}}\right) = 0
More at x→1 from the right
limx(x1x2)=i\lim_{x \to -\infty}\left(x \sqrt{1 - x^{2}}\right) = - \infty i
More at x→-oo
The graph
Limit of the function x*sqrt(1-x^2)