Mister Exam

Other calculators:


x*sin(x/2)

Limit of the function x*sin(x/2)

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
     /     /x\\
 lim |x*sin|-||
x->0+\     \2//
$$\lim_{x \to 0^+}\left(x \sin{\left(\frac{x}{2} \right)}\right)$$
Limit(x*sin(x/2), x, 0)
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to 0^-}\left(x \sin{\left(\frac{x}{2} \right)}\right) = 0$$
More at x→0 from the left
$$\lim_{x \to 0^+}\left(x \sin{\left(\frac{x}{2} \right)}\right) = 0$$
$$\lim_{x \to \infty}\left(x \sin{\left(\frac{x}{2} \right)}\right) = \infty \operatorname{sign}{\left(\left\langle -1, 1\right\rangle \right)}$$
More at x→oo
$$\lim_{x \to 1^-}\left(x \sin{\left(\frac{x}{2} \right)}\right) = \sin{\left(\frac{1}{2} \right)}$$
More at x→1 from the left
$$\lim_{x \to 1^+}\left(x \sin{\left(\frac{x}{2} \right)}\right) = \sin{\left(\frac{1}{2} \right)}$$
More at x→1 from the right
$$\lim_{x \to -\infty}\left(x \sin{\left(\frac{x}{2} \right)}\right) = - \infty \operatorname{sign}{\left(\left\langle -1, 1\right\rangle \right)}$$
More at x→-oo
Rapid solution [src]
0
$$0$$
One‐sided limits [src]
     /     /x\\
 lim |x*sin|-||
x->0+\     \2//
$$\lim_{x \to 0^+}\left(x \sin{\left(\frac{x}{2} \right)}\right)$$
0
$$0$$
= -1.326657548588e-32
     /     /x\\
 lim |x*sin|-||
x->0-\     \2//
$$\lim_{x \to 0^-}\left(x \sin{\left(\frac{x}{2} \right)}\right)$$
0
$$0$$
= -1.326657548588e-32
= -1.326657548588e-32
Numerical answer [src]
-1.326657548588e-32
-1.326657548588e-32
The graph
Limit of the function x*sin(x/2)