$$\lim_{x \to \text{NaN}^-}\left(x \sin{\left(3 x \right)}\right) = \lim_{x \to \text{NaN}^+}\left(x \sin{\left(3 x \right)}\right)$$
More at x→nan from the left$$\lim_{x \to \text{NaN}^+}\left(x \sin{\left(3 x \right)}\right)$$
$$\lim_{x \to \infty}\left(x \sin{\left(3 x \right)}\right) = \left\langle -\infty, \infty\right\rangle$$
More at x→oo$$\lim_{x \to 0^-}\left(x \sin{\left(3 x \right)}\right) = 0$$
More at x→0 from the left$$\lim_{x \to 0^+}\left(x \sin{\left(3 x \right)}\right) = 0$$
More at x→0 from the right$$\lim_{x \to 1^-}\left(x \sin{\left(3 x \right)}\right) = \sin{\left(3 \right)}$$
More at x→1 from the left$$\lim_{x \to 1^+}\left(x \sin{\left(3 x \right)}\right) = \sin{\left(3 \right)}$$
More at x→1 from the right$$\lim_{x \to -\infty}\left(x \sin{\left(3 x \right)}\right) = \left\langle -\infty, \infty\right\rangle$$
More at x→-oo