Mister Exam

Other calculators:


x*log(1+x^2)

Limit of the function x*log(1+x^2)

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
     /     /     2\\
 lim \x*log\1 + x //
x->oo               
limx(xlog(x2+1))\lim_{x \to \infty}\left(x \log{\left(x^{2} + 1 \right)}\right)
Limit(x*log(1 + x^2), x, oo, dir='-')
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
02468-8-6-4-2-1010-100100
Rapid solution [src]
oo
\infty
Other limits x→0, -oo, +oo, 1
limx(xlog(x2+1))=\lim_{x \to \infty}\left(x \log{\left(x^{2} + 1 \right)}\right) = \infty
limx0(xlog(x2+1))=0\lim_{x \to 0^-}\left(x \log{\left(x^{2} + 1 \right)}\right) = 0
More at x→0 from the left
limx0+(xlog(x2+1))=0\lim_{x \to 0^+}\left(x \log{\left(x^{2} + 1 \right)}\right) = 0
More at x→0 from the right
limx1(xlog(x2+1))=log(2)\lim_{x \to 1^-}\left(x \log{\left(x^{2} + 1 \right)}\right) = \log{\left(2 \right)}
More at x→1 from the left
limx1+(xlog(x2+1))=log(2)\lim_{x \to 1^+}\left(x \log{\left(x^{2} + 1 \right)}\right) = \log{\left(2 \right)}
More at x→1 from the right
limx(xlog(x2+1))=\lim_{x \to -\infty}\left(x \log{\left(x^{2} + 1 \right)}\right) = -\infty
More at x→-oo
The graph
Limit of the function x*log(1+x^2)