Mister Exam
Lang:
EN
EN
ES
RU
Other calculators:
Integral Step by Step
Derivative Step by Step
Differential equations Step by Step
How to use it?
Limit of the function
:
Limit of (-exp(-x)-2*x+exp(x))/(x-sin(x))
Limit of (3-4*x^2+8*x^4)/(1+2*x^4)
Limit of (7*x+8*x^3)/(4-x)
Limit of (1-x^3+5*x^4)/(x+2*x^4)
Integral of d{x}
:
x*e^(x^2)
x*e^(x^2)
Derivative of
:
x*e^(x^2)
Identical expressions
x*e^(x^ two)
x multiply by e to the power of (x squared )
x multiply by e to the power of (x to the power of two)
x*e(x2)
x*ex2
x*e^(x²)
x*e to the power of (x to the power of 2)
xe^(x^2)
xe(x2)
xex2
xe^x^2
Limit of the function
/
x*e^(x^2)
Limit of the function x*e^(x^2)
at
→
Calculate the limit!
v
For end points:
---------
From the left (x0-)
From the right (x0+)
The graph:
from
to
Piecewise:
{
enter the piecewise function here
The solution
You have entered
[src]
/ / 2\\ | \x /| lim \x*E / x->oo
lim
x
→
∞
(
e
x
2
x
)
\lim_{x \to \infty}\left(e^{x^{2}} x\right)
x
→
∞
lim
(
e
x
2
x
)
Limit(x*E^(x^2), x, oo, dir='-')
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
0
2
4
6
8
-8
-6
-4
-2
-10
10
5e44
-3e44
Plot the graph
Rapid solution
[src]
oo
∞
\infty
∞
Expand and simplify
Other limits x→0, -oo, +oo, 1
lim
x
→
∞
(
e
x
2
x
)
=
∞
\lim_{x \to \infty}\left(e^{x^{2}} x\right) = \infty
x
→
∞
lim
(
e
x
2
x
)
=
∞
lim
x
→
0
−
(
e
x
2
x
)
=
0
\lim_{x \to 0^-}\left(e^{x^{2}} x\right) = 0
x
→
0
−
lim
(
e
x
2
x
)
=
0
More at x→0 from the left
lim
x
→
0
+
(
e
x
2
x
)
=
0
\lim_{x \to 0^+}\left(e^{x^{2}} x\right) = 0
x
→
0
+
lim
(
e
x
2
x
)
=
0
More at x→0 from the right
lim
x
→
1
−
(
e
x
2
x
)
=
e
\lim_{x \to 1^-}\left(e^{x^{2}} x\right) = e
x
→
1
−
lim
(
e
x
2
x
)
=
e
More at x→1 from the left
lim
x
→
1
+
(
e
x
2
x
)
=
e
\lim_{x \to 1^+}\left(e^{x^{2}} x\right) = e
x
→
1
+
lim
(
e
x
2
x
)
=
e
More at x→1 from the right
lim
x
→
−
∞
(
e
x
2
x
)
=
−
∞
\lim_{x \to -\infty}\left(e^{x^{2}} x\right) = -\infty
x
→
−
∞
lim
(
e
x
2
x
)
=
−
∞
More at x→-oo
The graph