Mister Exam

Other calculators:


x*e^(1/x)

Limit of the function x*e^(1/x)

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
     /  x ___\
 lim \x*\/ E /
x->0+         
$$\lim_{x \to 0^+}\left(e^{\frac{1}{x}} x\right)$$
Limit(x*E^(1/x), x, 0)
The graph
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to 0^-}\left(e^{\frac{1}{x}} x\right) = \infty$$
More at x→0 from the left
$$\lim_{x \to 0^+}\left(e^{\frac{1}{x}} x\right) = \infty$$
$$\lim_{x \to \infty}\left(e^{\frac{1}{x}} x\right) = \infty$$
More at x→oo
$$\lim_{x \to 1^-}\left(e^{\frac{1}{x}} x\right) = e$$
More at x→1 from the left
$$\lim_{x \to 1^+}\left(e^{\frac{1}{x}} x\right) = e$$
More at x→1 from the right
$$\lim_{x \to -\infty}\left(e^{\frac{1}{x}} x\right) = -\infty$$
More at x→-oo
Rapid solution [src]
oo
$$\infty$$
One‐sided limits [src]
     /  x ___\
 lim \x*\/ E /
x->0+         
$$\lim_{x \to 0^+}\left(e^{\frac{1}{x}} x\right)$$
oo
$$\infty$$
= 0.0657325076344887
     /  x ___\
 lim \x*\/ E /
x->0-         
$$\lim_{x \to 0^-}\left(e^{\frac{1}{x}} x\right)$$
0
$$0$$
= -2.6502391286206e-28
= -2.6502391286206e-28
Numerical answer [src]
0.0657325076344887
0.0657325076344887
The graph
Limit of the function x*e^(1/x)