$$\lim_{x \to 0^-}\left(e^{\frac{1}{x}} x\right) = \infty$$ More at x→0 from the left $$\lim_{x \to 0^+}\left(e^{\frac{1}{x}} x\right) = \infty$$ $$\lim_{x \to \infty}\left(e^{\frac{1}{x}} x\right) = \infty$$ More at x→oo $$\lim_{x \to 1^-}\left(e^{\frac{1}{x}} x\right) = e$$ More at x→1 from the left $$\lim_{x \to 1^+}\left(e^{\frac{1}{x}} x\right) = e$$ More at x→1 from the right $$\lim_{x \to -\infty}\left(e^{\frac{1}{x}} x\right) = -\infty$$ More at x→-oo