Mister Exam

Other calculators:

Limit of the function x*acot(x/n^2)

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
     /      /x \\
 lim |x*acot|--||
n->oo|      | 2||
     \      \n //
$$\lim_{n \to \infty}\left(x \operatorname{acot}{\left(\frac{x}{n^{2}} \right)}\right)$$
Limit(x*acot(x/n^2), n, oo, dir='-')
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
Rapid solution [src]
pi*x
----
 2  
$$\frac{\pi x}{2}$$
Other limits n→0, -oo, +oo, 1
$$\lim_{n \to \infty}\left(x \operatorname{acot}{\left(\frac{x}{n^{2}} \right)}\right) = \frac{\pi x}{2}$$
$$\lim_{n \to 0^-}\left(x \operatorname{acot}{\left(\frac{x}{n^{2}} \right)}\right) = x \operatorname{acot}{\left(\tilde{\infty} x \right)}$$
More at n→0 from the left
$$\lim_{n \to 0^+}\left(x \operatorname{acot}{\left(\frac{x}{n^{2}} \right)}\right) = x \operatorname{acot}{\left(\tilde{\infty} x \right)}$$
More at n→0 from the right
$$\lim_{n \to 1^-}\left(x \operatorname{acot}{\left(\frac{x}{n^{2}} \right)}\right) = x \operatorname{acot}{\left(x \right)}$$
More at n→1 from the left
$$\lim_{n \to 1^+}\left(x \operatorname{acot}{\left(\frac{x}{n^{2}} \right)}\right) = x \operatorname{acot}{\left(x \right)}$$
More at n→1 from the right
$$\lim_{n \to -\infty}\left(x \operatorname{acot}{\left(\frac{x}{n^{2}} \right)}\right) = \frac{\pi x}{2}$$
More at n→-oo