$$\lim_{n \to \infty}\left(x \operatorname{acot}{\left(\frac{x}{n^{2}} \right)}\right) = \frac{\pi x}{2}$$
$$\lim_{n \to 0^-}\left(x \operatorname{acot}{\left(\frac{x}{n^{2}} \right)}\right) = x \operatorname{acot}{\left(\tilde{\infty} x \right)}$$
More at n→0 from the left$$\lim_{n \to 0^+}\left(x \operatorname{acot}{\left(\frac{x}{n^{2}} \right)}\right) = x \operatorname{acot}{\left(\tilde{\infty} x \right)}$$
More at n→0 from the right$$\lim_{n \to 1^-}\left(x \operatorname{acot}{\left(\frac{x}{n^{2}} \right)}\right) = x \operatorname{acot}{\left(x \right)}$$
More at n→1 from the left$$\lim_{n \to 1^+}\left(x \operatorname{acot}{\left(\frac{x}{n^{2}} \right)}\right) = x \operatorname{acot}{\left(x \right)}$$
More at n→1 from the right$$\lim_{n \to -\infty}\left(x \operatorname{acot}{\left(\frac{x}{n^{2}} \right)}\right) = \frac{\pi x}{2}$$
More at n→-oo