Mister Exam
Lang:
EN
EN
ES
RU
Other calculators:
Integral Step by Step
Derivative Step by Step
Differential equations Step by Step
How to use it?
Limit of the function
:
Limit of -x+x*(2-x)^2
Limit of (-3+2*log((3+x)/x))/x
Limit of ((-1+2*n)/(1+2*n))^(1+n)
Limit of (15-28*x^5-19*x+16*x^2+19*x^3)/(15-30*x^2-7*x^5+11*x^4+23*x)
Graphing y =
:
x-x^4
Factor polynomial
:
x-x^4
Integral of d{x}
:
x-x^4
Identical expressions
x-x^ four
x minus x to the power of 4
x minus x to the power of four
x-x4
x-x⁴
Similar expressions
x-x^4/(2-x^3)
x+x^4
Limit of the function
/
x-x^4
Limit of the function x-x^4
at
→
Calculate the limit!
v
For end points:
---------
From the left (x0-)
From the right (x0+)
The graph:
from
to
Piecewise:
{
enter the piecewise function here
The solution
You have entered
[src]
/ 4\ lim \x - x / x->oo
$$\lim_{x \to \infty}\left(- x^{4} + x\right)$$
Limit(x - x^4, x, oo, dir='-')
Detail solution
Let's take the limit
$$\lim_{x \to \infty}\left(- x^{4} + x\right)$$
Let's divide numerator and denominator by x^4:
$$\lim_{x \to \infty}\left(- x^{4} + x\right)$$ =
$$\lim_{x \to \infty}\left(\frac{-1 + \frac{1}{x^{3}}}{\frac{1}{x^{4}}}\right)$$
Do Replacement
$$u = \frac{1}{x}$$
then
$$\lim_{x \to \infty}\left(\frac{-1 + \frac{1}{x^{3}}}{\frac{1}{x^{4}}}\right) = \lim_{u \to 0^+}\left(\frac{u^{3} - 1}{u^{4}}\right)$$
=
$$\frac{-1 + 0^{3}}{0} = -\infty$$
The final answer:
$$\lim_{x \to \infty}\left(- x^{4} + x\right) = -\infty$$
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
Plot the graph
Rapid solution
[src]
-oo
$$-\infty$$
Expand and simplify
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to \infty}\left(- x^{4} + x\right) = -\infty$$
$$\lim_{x \to 0^-}\left(- x^{4} + x\right) = 0$$
More at x→0 from the left
$$\lim_{x \to 0^+}\left(- x^{4} + x\right) = 0$$
More at x→0 from the right
$$\lim_{x \to 1^-}\left(- x^{4} + x\right) = 0$$
More at x→1 from the left
$$\lim_{x \to 1^+}\left(- x^{4} + x\right) = 0$$
More at x→1 from the right
$$\lim_{x \to -\infty}\left(- x^{4} + x\right) = -\infty$$
More at x→-oo
The graph