Mister Exam

Other calculators:


(x-2*acot(x))/x

Limit of the function (x-2*acot(x))/x

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
     /x - 2*acot(x)\
 lim |-------------|
x->oo\      x      /
$$\lim_{x \to \infty}\left(\frac{x - 2 \operatorname{acot}{\left(x \right)}}{x}\right)$$
Limit((x - 2*acot(x))/x, x, oo, dir='-')
Lopital's rule
We have indeterminateness of type
oo/oo,

i.e. limit for the numerator is
$$\lim_{x \to \infty}\left(x - 2 \operatorname{acot}{\left(x \right)}\right) = \infty$$
and limit for the denominator is
$$\lim_{x \to \infty} x = \infty$$
Let's take derivatives of the numerator and denominator until we eliminate indeterninateness.
$$\lim_{x \to \infty}\left(\frac{x - 2 \operatorname{acot}{\left(x \right)}}{x}\right)$$
=
$$\lim_{x \to \infty}\left(\frac{\frac{d}{d x} \left(x - 2 \operatorname{acot}{\left(x \right)}\right)}{\frac{d}{d x} x}\right)$$
=
$$\lim_{x \to \infty}\left(1 + \frac{2}{x^{2} + 1}\right)$$
=
$$\lim_{x \to \infty}\left(1 + \frac{2}{x^{2} + 1}\right)$$
=
$$1$$
It can be seen that we have applied Lopital's rule (we have taken derivatives with respect to the numerator and denominator) 1 time(s)
The graph
Rapid solution [src]
1
$$1$$
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to \infty}\left(\frac{x - 2 \operatorname{acot}{\left(x \right)}}{x}\right) = 1$$
$$\lim_{x \to 0^-}\left(\frac{x - 2 \operatorname{acot}{\left(x \right)}}{x}\right) = -\infty$$
More at x→0 from the left
$$\lim_{x \to 0^+}\left(\frac{x - 2 \operatorname{acot}{\left(x \right)}}{x}\right) = -\infty$$
More at x→0 from the right
$$\lim_{x \to 1^-}\left(\frac{x - 2 \operatorname{acot}{\left(x \right)}}{x}\right) = 1 - \frac{\pi}{2}$$
More at x→1 from the left
$$\lim_{x \to 1^+}\left(\frac{x - 2 \operatorname{acot}{\left(x \right)}}{x}\right) = 1 - \frac{\pi}{2}$$
More at x→1 from the right
$$\lim_{x \to -\infty}\left(\frac{x - 2 \operatorname{acot}{\left(x \right)}}{x}\right) = 1$$
More at x→-oo
The graph
Limit of the function (x-2*acot(x))/x