Mister Exam

Limit of the function x-|x|

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
 lim  (x - |x|)
x->-1+         
$$\lim_{x \to -1^+}\left(x - \left|{x}\right|\right)$$
Limit(x - |x|, x, -1)
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
Rapid solution [src]
-2
$$-2$$
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to -1^-}\left(x - \left|{x}\right|\right) = -2$$
More at x→-1 from the left
$$\lim_{x \to -1^+}\left(x - \left|{x}\right|\right) = -2$$
$$\lim_{x \to \infty}\left(x - \left|{x}\right|\right) = 0$$
More at x→oo
$$\lim_{x \to 0^-}\left(x - \left|{x}\right|\right) = 0$$
More at x→0 from the left
$$\lim_{x \to 0^+}\left(x - \left|{x}\right|\right) = 0$$
More at x→0 from the right
$$\lim_{x \to 1^-}\left(x - \left|{x}\right|\right) = 0$$
More at x→1 from the left
$$\lim_{x \to 1^+}\left(x - \left|{x}\right|\right) = 0$$
More at x→1 from the right
$$\lim_{x \to -\infty}\left(x - \left|{x}\right|\right) = -\infty$$
More at x→-oo
One‐sided limits [src]
 lim  (x - |x|)
x->-1+         
$$\lim_{x \to -1^+}\left(x - \left|{x}\right|\right)$$
-2
$$-2$$
= -2.0
 lim  (x - |x|)
x->-1-         
$$\lim_{x \to -1^-}\left(x - \left|{x}\right|\right)$$
-2
$$-2$$
= -2.0
= -2.0
Numerical answer [src]
-2.0
-2.0
The graph
Limit of the function x-|x|