Mister Exam

Other calculators:


(x-atan(x))/x^4

Limit of the function (x-atan(x))/x^4

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
     /x - atan(x)\
 lim |-----------|
x->0+|      4    |
     \     x     /
$$\lim_{x \to 0^+}\left(\frac{x - \operatorname{atan}{\left(x \right)}}{x^{4}}\right)$$
Limit((x - atan(x))/x^4, x, 0)
Lopital's rule
We have indeterminateness of type
0/0,

i.e. limit for the numerator is
$$\lim_{x \to 0^+}\left(x - \operatorname{atan}{\left(x \right)}\right) = 0$$
and limit for the denominator is
$$\lim_{x \to 0^+} x^{4} = 0$$
Let's take derivatives of the numerator and denominator until we eliminate indeterninateness.
$$\lim_{x \to 0^+}\left(\frac{x - \operatorname{atan}{\left(x \right)}}{x^{4}}\right)$$
=
$$\lim_{x \to 0^+}\left(\frac{\frac{d}{d x} \left(x - \operatorname{atan}{\left(x \right)}\right)}{\frac{d}{d x} x^{4}}\right)$$
=
$$\lim_{x \to 0^+}\left(\frac{1 - \frac{1}{x^{2} + 1}}{4 x^{3}}\right)$$
=
$$\lim_{x \to 0^+}\left(\frac{\frac{d}{d x} \left(1 - \frac{1}{x^{2} + 1}\right)}{\frac{d}{d x} 4 x^{3}}\right)$$
=
$$\lim_{x \to 0^+}\left(\frac{1}{6 x \left(x^{2} + 1\right)^{2}}\right)$$
=
$$\lim_{x \to 0^+}\left(\frac{1}{6 x}\right)$$
=
$$\lim_{x \to 0^+}\left(\frac{1}{6 x}\right)$$
=
$$\infty$$
It can be seen that we have applied Lopital's rule (we have taken derivatives with respect to the numerator and denominator) 2 time(s)
The graph
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to 0^-}\left(\frac{x - \operatorname{atan}{\left(x \right)}}{x^{4}}\right) = \infty$$
More at x→0 from the left
$$\lim_{x \to 0^+}\left(\frac{x - \operatorname{atan}{\left(x \right)}}{x^{4}}\right) = \infty$$
$$\lim_{x \to \infty}\left(\frac{x - \operatorname{atan}{\left(x \right)}}{x^{4}}\right) = 0$$
More at x→oo
$$\lim_{x \to 1^-}\left(\frac{x - \operatorname{atan}{\left(x \right)}}{x^{4}}\right) = 1 - \frac{\pi}{4}$$
More at x→1 from the left
$$\lim_{x \to 1^+}\left(\frac{x - \operatorname{atan}{\left(x \right)}}{x^{4}}\right) = 1 - \frac{\pi}{4}$$
More at x→1 from the right
$$\lim_{x \to -\infty}\left(\frac{x - \operatorname{atan}{\left(x \right)}}{x^{4}}\right) = 0$$
More at x→-oo
One‐sided limits [src]
     /x - atan(x)\
 lim |-----------|
x->0+|      4    |
     \     x     /
$$\lim_{x \to 0^+}\left(\frac{x - \operatorname{atan}{\left(x \right)}}{x^{4}}\right)$$
oo
$$\infty$$
= 50.3320088715133
     /x - atan(x)\
 lim |-----------|
x->0-|      4    |
     \     x     /
$$\lim_{x \to 0^-}\left(\frac{x - \operatorname{atan}{\left(x \right)}}{x^{4}}\right)$$
-oo
$$-\infty$$
= -50.3320088715133
= -50.3320088715133
Rapid solution [src]
oo
$$\infty$$
Numerical answer [src]
50.3320088715133
50.3320088715133
The graph
Limit of the function (x-atan(x))/x^4