Mister Exam

Other calculators:

Limit of the function x/y+y/x

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
     /x   y\
 lim |- + -|
x->oo\y   x/
$$\lim_{x \to \infty}\left(\frac{x}{y} + \frac{y}{x}\right)$$
Limit(x/y + y/x, x, oo, dir='-')
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
Rapid solution [src]
       /1\
oo*sign|-|
       \y/
$$\infty \operatorname{sign}{\left(\frac{1}{y} \right)}$$
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to \infty}\left(\frac{x}{y} + \frac{y}{x}\right) = \infty \operatorname{sign}{\left(\frac{1}{y} \right)}$$
$$\lim_{x \to 0^-}\left(\frac{x}{y} + \frac{y}{x}\right) = - \infty \operatorname{sign}{\left(y \right)}$$
More at x→0 from the left
$$\lim_{x \to 0^+}\left(\frac{x}{y} + \frac{y}{x}\right) = \infty \operatorname{sign}{\left(y \right)}$$
More at x→0 from the right
$$\lim_{x \to 1^-}\left(\frac{x}{y} + \frac{y}{x}\right) = \frac{y^{2} + 1}{y}$$
More at x→1 from the left
$$\lim_{x \to 1^+}\left(\frac{x}{y} + \frac{y}{x}\right) = \frac{y^{2} + 1}{y}$$
More at x→1 from the right
$$\lim_{x \to -\infty}\left(\frac{x}{y} + \frac{y}{x}\right) = - \infty \operatorname{sign}{\left(\frac{1}{y} \right)}$$
More at x→-oo