$$\lim_{x \to \infty}\left(\frac{x}{y} + \frac{y}{x}\right) = \infty \operatorname{sign}{\left(\frac{1}{y} \right)}$$
$$\lim_{x \to 0^-}\left(\frac{x}{y} + \frac{y}{x}\right) = - \infty \operatorname{sign}{\left(y \right)}$$
More at x→0 from the left$$\lim_{x \to 0^+}\left(\frac{x}{y} + \frac{y}{x}\right) = \infty \operatorname{sign}{\left(y \right)}$$
More at x→0 from the right$$\lim_{x \to 1^-}\left(\frac{x}{y} + \frac{y}{x}\right) = \frac{y^{2} + 1}{y}$$
More at x→1 from the left$$\lim_{x \to 1^+}\left(\frac{x}{y} + \frac{y}{x}\right) = \frac{y^{2} + 1}{y}$$
More at x→1 from the right$$\lim_{x \to -\infty}\left(\frac{x}{y} + \frac{y}{x}\right) = - \infty \operatorname{sign}{\left(\frac{1}{y} \right)}$$
More at x→-oo