Mister Exam

Other calculators:


x/(x-x^2)

Limit of the function x/(x-x^2)

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
     /  x   \
 lim |------|
x->oo|     2|
     \x - x /
$$\lim_{x \to \infty}\left(\frac{x}{- x^{2} + x}\right)$$
Limit(x/(x - x^2), x, oo, dir='-')
Detail solution
Let's take the limit
$$\lim_{x \to \infty}\left(\frac{x}{- x^{2} + x}\right)$$
Let's divide numerator and denominator by x^2:
$$\lim_{x \to \infty}\left(\frac{x}{- x^{2} + x}\right)$$ =
$$\lim_{x \to \infty}\left(\frac{1}{x \left(-1 + \frac{1}{x}\right)}\right)$$
Do Replacement
$$u = \frac{1}{x}$$
then
$$\lim_{x \to \infty}\left(\frac{1}{x \left(-1 + \frac{1}{x}\right)}\right) = \lim_{u \to 0^+}\left(\frac{u}{u - 1}\right)$$
=
$$\frac{0}{-1} = 0$$

The final answer:
$$\lim_{x \to \infty}\left(\frac{x}{- x^{2} + x}\right) = 0$$
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
Rapid solution [src]
0
$$0$$
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to \infty}\left(\frac{x}{- x^{2} + x}\right) = 0$$
$$\lim_{x \to 0^-}\left(\frac{x}{- x^{2} + x}\right) = 1$$
More at x→0 from the left
$$\lim_{x \to 0^+}\left(\frac{x}{- x^{2} + x}\right) = 1$$
More at x→0 from the right
$$\lim_{x \to 1^-}\left(\frac{x}{- x^{2} + x}\right) = \infty$$
More at x→1 from the left
$$\lim_{x \to 1^+}\left(\frac{x}{- x^{2} + x}\right) = -\infty$$
More at x→1 from the right
$$\lim_{x \to -\infty}\left(\frac{x}{- x^{2} + x}\right) = 0$$
More at x→-oo
The graph
Limit of the function x/(x-x^2)