Mister Exam
Lang:
EN
EN
ES
RU
Other calculators:
Integral Step by Step
Derivative Step by Step
Differential equations Step by Step
How to use it?
Limit of the function
:
Limit of (-16+x^2-6*x)/(-2+x+x^2)
Limit of -1+sqrt(5)-x-2/(sqrt(2)-x)
Limit of (-cos(x)^3+cos(x))/(4*x*sin(x))
Limit of cos((1+x)/x^3)
Graphing y =
:
x/6
Derivative of
:
x/6
Identical expressions
x/ six
x divide by 6
x divide by six
Similar expressions
sin(4*x)/(6*x)
sin(7*x)/(6*x)
(6-x)/(6-sqrt(x))
sin(2*x)/(6*x)
(-8-3*x^5+5*x)/(6-2*x^7+9*x)
Limit of the function
/
x/6
Limit of the function x/6
at
→
Calculate the limit!
v
For end points:
---------
From the left (x0-)
From the right (x0+)
The graph:
from
to
Piecewise:
{
enter the piecewise function here
The solution
You have entered
[src]
/x\ lim |-| x->oo\6/
$$\lim_{x \to \infty}\left(\frac{x}{6}\right)$$
Limit(x/6, x, oo, dir='-')
Detail solution
Let's take the limit
$$\lim_{x \to \infty}\left(\frac{x}{6}\right)$$
Let's divide numerator and denominator by x:
$$\lim_{x \to \infty}\left(\frac{x}{6}\right)$$ =
$$\lim_{x \to \infty} \frac{1}{6 \frac{1}{x}}$$
Do Replacement
$$u = \frac{1}{x}$$
then
$$\lim_{x \to \infty} \frac{1}{6 \frac{1}{x}} = \lim_{u \to 0^+}\left(\frac{1}{6 u}\right)$$
=
$$\frac{1}{0 \cdot 6} = \infty$$
The final answer:
$$\lim_{x \to \infty}\left(\frac{x}{6}\right) = \infty$$
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
Plot the graph
Rapid solution
[src]
oo
$$\infty$$
Expand and simplify
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to \infty}\left(\frac{x}{6}\right) = \infty$$
$$\lim_{x \to 0^-}\left(\frac{x}{6}\right) = 0$$
More at x→0 from the left
$$\lim_{x \to 0^+}\left(\frac{x}{6}\right) = 0$$
More at x→0 from the right
$$\lim_{x \to 1^-}\left(\frac{x}{6}\right) = \frac{1}{6}$$
More at x→1 from the left
$$\lim_{x \to 1^+}\left(\frac{x}{6}\right) = \frac{1}{6}$$
More at x→1 from the right
$$\lim_{x \to -\infty}\left(\frac{x}{6}\right) = -\infty$$
More at x→-oo
The graph