$$\lim_{x \to \pi^-}\left(\frac{x}{\sin^{2}{\left(x \right)}}\right) = \infty$$
More at x→pi from the left$$\lim_{x \to \pi^+}\left(\frac{x}{\sin^{2}{\left(x \right)}}\right) = \infty$$
$$\lim_{x \to \infty}\left(\frac{x}{\sin^{2}{\left(x \right)}}\right)$$
More at x→oo$$\lim_{x \to 0^-}\left(\frac{x}{\sin^{2}{\left(x \right)}}\right) = -\infty$$
More at x→0 from the left$$\lim_{x \to 0^+}\left(\frac{x}{\sin^{2}{\left(x \right)}}\right) = \infty$$
More at x→0 from the right$$\lim_{x \to 1^-}\left(\frac{x}{\sin^{2}{\left(x \right)}}\right) = \frac{1}{\sin^{2}{\left(1 \right)}}$$
More at x→1 from the left$$\lim_{x \to 1^+}\left(\frac{x}{\sin^{2}{\left(x \right)}}\right) = \frac{1}{\sin^{2}{\left(1 \right)}}$$
More at x→1 from the right$$\lim_{x \to -\infty}\left(\frac{x}{\sin^{2}{\left(x \right)}}\right)$$
More at x→-oo