Mister Exam

Other calculators:

Limit of the function x/(1+e^x)

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
        /  x   \
  lim   |------|
x->pi*I+|     x|
        \1 + E /
$$\lim_{x \to i \pi^+}\left(\frac{x}{e^{x} + 1}\right)$$
Limit(x/(1 + E^x), x, pi*i)
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to i \pi^-}\left(\frac{x}{e^{x} + 1}\right) = - \infty i$$
More at x→pi*i from the left
$$\lim_{x \to i \pi^+}\left(\frac{x}{e^{x} + 1}\right) = - \infty i$$
$$\lim_{x \to \infty}\left(\frac{x}{e^{x} + 1}\right) = 0$$
More at x→oo
$$\lim_{x \to 0^-}\left(\frac{x}{e^{x} + 1}\right) = 0$$
More at x→0 from the left
$$\lim_{x \to 0^+}\left(\frac{x}{e^{x} + 1}\right) = 0$$
More at x→0 from the right
$$\lim_{x \to 1^-}\left(\frac{x}{e^{x} + 1}\right) = \frac{1}{1 + e}$$
More at x→1 from the left
$$\lim_{x \to 1^+}\left(\frac{x}{e^{x} + 1}\right) = \frac{1}{1 + e}$$
More at x→1 from the right
$$\lim_{x \to -\infty}\left(\frac{x}{e^{x} + 1}\right) = -\infty$$
More at x→-oo
Rapid solution [src]
-oo*I
$$- \infty i$$
One‐sided limits [src]
        /  x   \
  lim   |------|
x->pi*I+|     x|
        \1 + E /
$$\lim_{x \to i \pi^+}\left(\frac{x}{e^{x} + 1}\right)$$
-oo*I
$$- \infty i$$
        /  x   \
  lim   |------|
x->pi*I-|     x|
        \1 + E /
$$\lim_{x \to i \pi^-}\left(\frac{x}{e^{x} + 1}\right)$$
oo*I
$$\infty i$$
oo*i