Mister Exam
Lang:
EN
EN
ES
RU
Other calculators:
Integral Step by Step
Derivative Step by Step
Differential equations Step by Step
How to use it?
Limit of the function
:
Limit of 1+4/x
Limit of (-6+x^2-x)/(4-x^2)
Limit of (-2+x^2-x)/(1+x^2)
Limit of 15+x^2-8*x
Integral of d{x}
:
x/9
Graphing y =
:
x/9
Identical expressions
x/ nine
x divide by 9
x divide by nine
Similar expressions
x/(9-x)
(-15+x^2+2*x)/(9-x^2)
sin(4*x)/(9*x^2)
(-1+sqrt(-2+x))/(9-x^2)
(-18+x^2+3*x)/(9+x^2)
Limit of the function
/
x/9
Limit of the function x/9
at
→
Calculate the limit!
v
For end points:
---------
From the left (x0-)
From the right (x0+)
The graph:
from
to
Piecewise:
{
enter the piecewise function here
The solution
You have entered
[src]
/x\ lim |-| x->oo\9/
$$\lim_{x \to \infty}\left(\frac{x}{9}\right)$$
Limit(x/9, x, oo, dir='-')
Detail solution
Let's take the limit
$$\lim_{x \to \infty}\left(\frac{x}{9}\right)$$
Let's divide numerator and denominator by x:
$$\lim_{x \to \infty}\left(\frac{x}{9}\right)$$ =
$$\lim_{x \to \infty} \frac{1}{9 \frac{1}{x}}$$
Do Replacement
$$u = \frac{1}{x}$$
then
$$\lim_{x \to \infty} \frac{1}{9 \frac{1}{x}} = \lim_{u \to 0^+}\left(\frac{1}{9 u}\right)$$
=
$$\frac{1}{0 \cdot 9} = \infty$$
The final answer:
$$\lim_{x \to \infty}\left(\frac{x}{9}\right) = \infty$$
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
Plot the graph
Rapid solution
[src]
oo
$$\infty$$
Expand and simplify
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to \infty}\left(\frac{x}{9}\right) = \infty$$
$$\lim_{x \to 0^-}\left(\frac{x}{9}\right) = 0$$
More at x→0 from the left
$$\lim_{x \to 0^+}\left(\frac{x}{9}\right) = 0$$
More at x→0 from the right
$$\lim_{x \to 1^-}\left(\frac{x}{9}\right) = \frac{1}{9}$$
More at x→1 from the left
$$\lim_{x \to 1^+}\left(\frac{x}{9}\right) = \frac{1}{9}$$
More at x→1 from the right
$$\lim_{x \to -\infty}\left(\frac{x}{9}\right) = -\infty$$
More at x→-oo
The graph