Mister Exam

Other calculators:


x/log(1-2*x)

Limit of the function x/log(1-2*x)

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
     /     x      \
 lim |------------|
x->0+\log(1 - 2*x)/
$$\lim_{x \to 0^+}\left(\frac{x}{\log{\left(1 - 2 x \right)}}\right)$$
Limit(x/log(1 - 2*x), x, 0)
Lopital's rule
We have indeterminateness of type
0/0,

i.e. limit for the numerator is
$$\lim_{x \to 0^+} x = 0$$
and limit for the denominator is
$$\lim_{x \to 0^+} \log{\left(1 - 2 x \right)} = 0$$
Let's take derivatives of the numerator and denominator until we eliminate indeterninateness.
$$\lim_{x \to 0^+}\left(\frac{x}{\log{\left(1 - 2 x \right)}}\right)$$
=
$$\lim_{x \to 0^+}\left(\frac{\frac{d}{d x} x}{\frac{d}{d x} \log{\left(1 - 2 x \right)}}\right)$$
=
$$\lim_{x \to 0^+}\left(x - \frac{1}{2}\right)$$
=
$$\lim_{x \to 0^+} - \frac{1}{2}$$
=
$$\lim_{x \to 0^+} - \frac{1}{2}$$
=
$$- \frac{1}{2}$$
It can be seen that we have applied Lopital's rule (we have taken derivatives with respect to the numerator and denominator) 1 time(s)
The graph
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to 0^-}\left(\frac{x}{\log{\left(1 - 2 x \right)}}\right) = - \frac{1}{2}$$
More at x→0 from the left
$$\lim_{x \to 0^+}\left(\frac{x}{\log{\left(1 - 2 x \right)}}\right) = - \frac{1}{2}$$
$$\lim_{x \to \infty}\left(\frac{x}{\log{\left(1 - 2 x \right)}}\right) = \infty$$
More at x→oo
$$\lim_{x \to 1^-}\left(\frac{x}{\log{\left(1 - 2 x \right)}}\right) = - \frac{i}{\pi}$$
More at x→1 from the left
$$\lim_{x \to 1^+}\left(\frac{x}{\log{\left(1 - 2 x \right)}}\right) = - \frac{i}{\pi}$$
More at x→1 from the right
$$\lim_{x \to -\infty}\left(\frac{x}{\log{\left(1 - 2 x \right)}}\right) = -\infty$$
More at x→-oo
Rapid solution [src]
-1/2
$$- \frac{1}{2}$$
One‐sided limits [src]
     /     x      \
 lim |------------|
x->0+\log(1 - 2*x)/
$$\lim_{x \to 0^+}\left(\frac{x}{\log{\left(1 - 2 x \right)}}\right)$$
-1/2
$$- \frac{1}{2}$$
= -0.5
     /     x      \
 lim |------------|
x->0-\log(1 - 2*x)/
$$\lim_{x \to 0^-}\left(\frac{x}{\log{\left(1 - 2 x \right)}}\right)$$
-1/2
$$- \frac{1}{2}$$
= -0.5
= -0.5
Numerical answer [src]
-0.5
-0.5
The graph
Limit of the function x/log(1-2*x)