$$\lim_{x \to 2 i^-}\left(\frac{x}{x^{2} + 4}\right) = \infty$$ More at x→2*i from the left $$\lim_{x \to 2 i^+}\left(\frac{x}{x^{2} + 4}\right) = \infty$$ $$\lim_{x \to \infty}\left(\frac{x}{x^{2} + 4}\right) = 0$$ More at x→oo $$\lim_{x \to 0^-}\left(\frac{x}{x^{2} + 4}\right) = 0$$ More at x→0 from the left $$\lim_{x \to 0^+}\left(\frac{x}{x^{2} + 4}\right) = 0$$ More at x→0 from the right $$\lim_{x \to 1^-}\left(\frac{x}{x^{2} + 4}\right) = \frac{1}{5}$$ More at x→1 from the left $$\lim_{x \to 1^+}\left(\frac{x}{x^{2} + 4}\right) = \frac{1}{5}$$ More at x→1 from the right $$\lim_{x \to -\infty}\left(\frac{x}{x^{2} + 4}\right) = 0$$ More at x→-oo