Mister Exam

Other calculators:

Limit of the function x/(4+x^2)

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
       /  x   \
  lim  |------|
x->2*I+|     2|
       \4 + x /
$$\lim_{x \to 2 i^+}\left(\frac{x}{x^{2} + 4}\right)$$
Limit(x/(4 + x^2), x, 2*i)
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
Rapid solution [src]
oo
$$\infty$$
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to 2 i^-}\left(\frac{x}{x^{2} + 4}\right) = \infty$$
More at x→2*i from the left
$$\lim_{x \to 2 i^+}\left(\frac{x}{x^{2} + 4}\right) = \infty$$
$$\lim_{x \to \infty}\left(\frac{x}{x^{2} + 4}\right) = 0$$
More at x→oo
$$\lim_{x \to 0^-}\left(\frac{x}{x^{2} + 4}\right) = 0$$
More at x→0 from the left
$$\lim_{x \to 0^+}\left(\frac{x}{x^{2} + 4}\right) = 0$$
More at x→0 from the right
$$\lim_{x \to 1^-}\left(\frac{x}{x^{2} + 4}\right) = \frac{1}{5}$$
More at x→1 from the left
$$\lim_{x \to 1^+}\left(\frac{x}{x^{2} + 4}\right) = \frac{1}{5}$$
More at x→1 from the right
$$\lim_{x \to -\infty}\left(\frac{x}{x^{2} + 4}\right) = 0$$
More at x→-oo