Mister Exam

Other calculators:


(x/(5+x))^(8+x)

Limit of the function (x/(5+x))^(8+x)

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
            8 + x
     /  x  \     
 lim |-----|     
x->oo\5 + x/     
$$\lim_{x \to \infty} \left(\frac{x}{x + 5}\right)^{x + 8}$$
Limit((x/(5 + x))^(8 + x), x, oo, dir='-')
Detail solution
Let's take the limit
$$\lim_{x \to \infty} \left(\frac{x}{x + 5}\right)^{x + 8}$$
transform
$$\lim_{x \to \infty} \left(\frac{x}{x + 5}\right)^{x + 8}$$
=
$$\lim_{x \to \infty} \left(\frac{\left(x + 5\right) - 5}{x + 5}\right)^{x + 8}$$
=
$$\lim_{x \to \infty} \left(- \frac{5}{x + 5} + \frac{x + 5}{x + 5}\right)^{x + 8}$$
=
$$\lim_{x \to \infty} \left(1 - \frac{5}{x + 5}\right)^{x + 8}$$
=
do replacement
$$u = \frac{x + 5}{-5}$$
then
$$\lim_{x \to \infty} \left(1 - \frac{5}{x + 5}\right)^{x + 8}$$ =
=
$$\lim_{u \to \infty} \left(1 + \frac{1}{u}\right)^{3 - 5 u}$$
=
$$\lim_{u \to \infty}\left(\left(1 + \frac{1}{u}\right)^{3} \left(1 + \frac{1}{u}\right)^{- 5 u}\right)$$
=
$$\lim_{u \to \infty} \left(1 + \frac{1}{u}\right)^{3} \lim_{u \to \infty} \left(1 + \frac{1}{u}\right)^{- 5 u}$$
=
$$\lim_{u \to \infty} \left(1 + \frac{1}{u}\right)^{- 5 u}$$
=
$$\left(\left(\lim_{u \to \infty} \left(1 + \frac{1}{u}\right)^{u}\right)\right)^{-5}$$
The limit
$$\lim_{u \to \infty} \left(1 + \frac{1}{u}\right)^{u}$$
is second remarkable limit, is equal to e ~ 2.718281828459045
then
$$\left(\left(\lim_{u \to \infty} \left(1 + \frac{1}{u}\right)^{u}\right)\right)^{-5} = e^{-5}$$

The final answer:
$$\lim_{x \to \infty} \left(\frac{x}{x + 5}\right)^{x + 8} = e^{-5}$$
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
Rapid solution [src]
 -5
e  
$$e^{-5}$$
The graph
Limit of the function (x/(5+x))^(8+x)